Skip to main content

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 136))

  • 125 Accesses

Abstract

The dynamic models are complex and highly nonlinear; thus, finding an automatic machine's time response requires numerical solutions. There are several forms of finding the time response of complex systems, in particular when combining different components. This chapter presents the dynamic response of automatic machines widely used in industrial applications. The dynamic equations were derived in previous chapters, and the solution is found using Simulink™. Examples include power supply mechanisms by electric motors, gear transmissions, belt transmissions, ball screw systems, and pneumatic applications. It also includes special codes for simulating the nonlinear terms of the gear mesh stiffness, ball bearing stiffness, and the bearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The simulations were calculated with Matlab and Simulink license number: 31626547/41095243.

References

  1. Angeles, J.: Fundamentals of Robotic Mechanical Systems Theory, Methods, and Algorithms Fourth Edition. ISSN 0941-5122, Springer Cham Heidelberg New York Dordrecht London (2014)

    Google Scholar 

  2. Shabana, A.: Dynamics of multibody systems, 2nd ed., ISBN 0-521–59446-4, Cambridge University Press, New York (1998)

    Google Scholar 

  3. Müller, A.: Representation of the kinematic topology of mechanisms for kinematic analysis, Mech. Sci., 6, 137–146 (2015). https://doi.org/10.5194/ms-6-137-2015

  4. El-Hawary, M., E.: Principles of Electric Machines with Power Electronic Applications. ISBN 0–471–20812–4, John Wiley & Sons, New York, (2002)

    Google Scholar 

  5. Krivts, I., Krejnin, L. G., V.,: Pneumatic actuating systems for automatic equipment : structure and design. ISBN 0-8493-2964-7, CRC Press Taylor & Francis, Florida, (2006)

    Google Scholar 

  6. Kulakowski, B.T., Gardner, J., F., Shearer, J.L.: Dynamic modeling and control of engineering systems. Cambridge University Press, ISBN: 978-0-521-86435-0 (2007)

    Google Scholar 

  7. Klee, H.,: Simulation of Dynamic Systems with MATLAB and Simulink, 1st edn. CRC Press Taylor & Francis, Florida, ISBN: 978-0-429-18807-7 (2007)

    Google Scholar 

  8. Jauregui-Correa, J., Lozano Guzman, A.: Mechanical Vibrations and Condition Monitoring. Elsevier, Academic Press (2020). ISBN 9780128197967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Jauregui-Correa .

Appendix

Appendix

6.1.1 Simulation Parameters

The simulation parameters for the system composed by a DC motor, a nonlinear transmission and elastic band are:

% %   Parameters Electric Motor (Series) % V=240;% Volts Rr=31; % Rotor's resistance Ohms Rs=57; % Stator's resistance Ohms (857 for a parallel motor) Lr=0.00001; % Rotor's inductance H Ls=0.00001; % Stator's Inductance H Ke=0.8;% Voltage constant Kt=0.8;% Torque constant C0m=0.01;% Friction coefficient motor Jm=2.188e-4;% Rotor's inertia Kg-m^2 % %   Parameters Gearbox % Np=27; Ng=41; relcon=3.7; rp=0.072; % Pinion Radius (m) rg=rp*41/27; % Gear Radius (m) Jp=0.0059616; % Moment of Inertia, pinion (Kg-m^2) Jg=0.007523; % Moment of Inertia, gear (Kg-m^2 mp=2.3; % Pinion mass (Kg) mg=3.6; % Gear mass (Kg) KT=193917.5; % Teeth stifnness (N/m) Kp=1e6; % Pinion support stiffness Kg=1e6; % Gear support stiffness Fe=0.0045/1000; % Manufacturing errors ex=0.001/1000; % Unbalance T=12; % Output torque (N-m) % %   Bearing parameters % Nb1=27; % Total number of roller elements alpha= 19; % Contact angle alpha= acos(alpha*pi/180); Nbol1=3; % Number of rollers under contact d1=5/1000; % Roller diamater D1=27/1000; % Pitch diameter Nbol2=3; d2=13/1000; D2=35/1000; Fb1=0.01/1000; % Defect % %   Parameters Ball Screw % C0t=0.0001;% Firction coefficient screw-nut psc=5/1000; % Screw's pitch [m] dt=25/1000; % Screw diameter [m] Lt=40/1000; % Screw length [m] Ktx=0.6*pi*210000e6*dt*Lt/4; % Screw stiffness eq. 5.38 and 5.39 mt=7850*pi*dt^2*Lt; % Screw mass [kg] Jt=mt*(dt/2)^2/2; %Screw and nut inertia Kg-m^2 % %   Elastic band % a2=20;% Coefficient for the EA modulus (manufacturing reference) rpol=91.7/1000; % Pulley pitch diameter (mm) part 112864 Dodge Catalog page PT11-5 mbel=0.35/2.2; %Belt mass [kg] cbel=0.02; % Estimated damping coefficient wbel=20/1000; % Belt's with tbel=2.75/1000; % Belt's thickness Lbel=40/1000; %Belt's span

The simulation parameters for the pneumatic systems are:

%    %   Piston parametres % diam=16/1000; % [m] drod=0/1000; % [m] Le=30/1000; % Equivalent length for mass estimation[m] L=42/1000; % piston stroke [m] A1=3.141592654*diam^2/4; % Nominal area A2=A1-3.141592654*drod^2/4; % Rod area A1L=1e-6; % A1/(2*L); A2L=1e-6; %A2/(2*L); V01=A1*L/100; V02=A2*L/100; % %   Dynamic parameters % mp=7850*((3.141592654*diam^2/4)*Le); % [kg] bp=-0.0028*(1000*diam)^2+1.0114*1000*diam-3.0261; % [kg-s/m] %bp=100*bp; FS=-0.0042*(1000*diam)^2+1.1442*1000*diam-8.5498; % Static coefficient [N] FD=-0.0019*(1000*diam)^2+0.5535*1000*diam-4.1324; % Dynamic coefficient [N] FNL=FD; % Nonlinear force % %   Gas properties % k=1.4; R=232; T=293; % Grados Kelvin % %   Parámetros de la válvula % KV=sqrt(2*k/(R*T*(k-1)))*0.259; AOi1=(1*1.2e-3)/(1000*60); AOi2=(1*1.2e-3)/(1000*60); AOo1=(1*1.2e-3)/(1000*60); AOo2=(1*1.2e-3)/(1000*60); % %   Coefficients and dimensions % bv=7; % Viscous coefficient [Ns/m] Kv=1000000/2.7; % Spring constant dv=0.00775; % Orifice diameter mv=0.1; % Mass [kg] y0=0.000001; % Spring preloading % %   Electric parameters % Lv0=0.001; % Inductance [H] Rv=2; % Resistance [Ohm] galf=0.05/1000; % Slinding gap FNLv=FD; % Componente no lineal % %   Operating pressure % Patm=101325; % Pas PLin=1.0342e7; % Pas=1500 psi % %   External load % Fext=300; % [N] % %   Pick and Place Cam's Dimensions % Rcam=150/1000; % [m] mgp=3;% Gripper's mass [kg] re=L/pi; % Gear radius [m] Fmu=1000; % Friction force along the sliding [N] Lcam=100/1000;% [m]

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jauregui-Correa, J.C. (2023). Dynamic Response of Mix Systems. In: Dynamic Modeling of Automatic Machines for Design and Control. Mechanisms and Machine Science, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-031-35942-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35942-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35941-5

  • Online ISBN: 978-3-031-35942-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics