Skip to main content

Gain and Bandwidth Enhancement Techniques for Terahertz Planar Antenna for 6G Communication

  • Chapter
  • First Online:
Antenna Technology for Terahertz Wireless Communication
  • 361 Accesses

Abstract

This chapter presents gain and bandwidth enhancement techniques for THz planar microstrip antennas. Four models were designed, and the simulation results are presented in this chapter. The developed THz antenna models are as follows: (1) low SLLs microstrip array antenna for a resonance frequency of 118.2 GHz, and the achieved gain and impedance bandwidth were 17.54 dB and > 7.86 GHz. Further, the sub-model of this design was a THz low SLLs microstrip array antenna with bandstop FSSs for a resonance frequency of 118.2 GHz, and the achieved gain and impedance bandwidth is 21.16 dB and > 6.15 GHz. (2) slotted circular patch microstrip array antenna with silicon integrated waveguide (SIW) for a resonance frequency of 121.18 GHz, and the achieved gain and impedance bandwidth were 23.73 dB and 12.86 GHz. The sub-model of this design is a THz slotting circular patch microstrip array antenna with SIW and bandstop FSSs for a resonance frequency of 121.3 GHz, and the achieved gain and impedance bandwidth is 26.78 dB and 12.47 GHz, (3) parasitic patch microstrip array antenna for a resonance frequency of 114.07 GHz, and the achieved gain and impedance bandwidth were 20.4 dB and 18.01 GHz. The sub-model of this design was a THz parasitic patch microstrip array antenna with bandstop FSSs for a resonance frequency of 118.09 GHz, and the achieved gain and impedance bandwidth is 21.8 dB and 18.46 GHz, and (4) log-periodic 24 × 16 microstrip array antenna for a resonance frequency of 96.66 GHz, and the achieved gain and impedance bandwidth are 18.78 dB and 52.6 GHz. The first sub-model of this antenna was a THz log-periodic 24 × 32 microstrip array antenna for a resonance frequency of 137.34 GHz, and the achieved gain and impedance bandwidth are 19.74 dB and 54.3 GHz. In comparison, the second sub-model of this antenna is a THz log-periodic 24 × 32 microstrip array antenna with bandstop FSSs for a resonance frequency of 128.46 GHz, and the achieved gain and impedance bandwidth is 21.42 dB and 53.9 GHz. From error analysis, the proposed THz log-periodic microstrip array antenna gain and the bandwidth because of the predictable fabrication etching tolerance accuracy ±10 μm, the microstrip laminates frequency-pendent dielectric properties (εr) and the frequency-pendent losses (tanδ) may change by about 1.81 dB, 3.2 GHz, because of the antennas’ high frequency working beyond 100 GHz. The simulation results of the primary models were validated with another kind of antenna simulator, and a good agreement ate achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. C. Strinati, S. Barbarossa, J. L. G. Jimenez, D. Kténas, N. Cassiau, and C. Dehos, “6G: The Next Frontier. From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 42–50, Sept. 2019.

    Article  Google Scholar 

  2. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopulos, “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78729–78757, May 2019.

    Article  Google Scholar 

  3. D. Liu, B. Gaucher, U. Pfeiffer, and J. Grzyb, Advanced Millimeter-Wave Technologies: Antennas, Packaging, and Circuits. John Wiley and Sons, UK, pp. 537–648, 2009.

    Google Scholar 

  4. D. G. Fang, Antenna Theory and Microstrip Antennas. Taylor & Francis Group, USA, pp. 33–84, 2010.

    Google Scholar 

  5. Z. N. Chen and M. Y. W. Chia, Broadband Planar Antennas Design and Applications. John Wiley & Sons: England, 2006.

    Google Scholar 

  6. G. Kouemou, Radar Technology. IntechOpen, India, pp. 1–430, 2009.

    Google Scholar 

  7. J. Maharjan, and D. Y. Choi, “Four-element microstrip patch array antenna with corporate-series feed network for 5G communication,” International Journal of Antennas and Propagation, vol. 2020, pp. 8760297/1–12, 2020.

    Article  Google Scholar 

  8. J. D. Preez and S. Sinha, Millimetre-Wave Antennas Configurations and Application. Springer Signals and Communication Technology, Switzerland, pp. 1–81, 2016.

    Google Scholar 

  9. C. A. Balanis, Antenna Theory Analysis, and Design. John Wiley & Sons, 4th Edition, USA, 2016.

    Google Scholar 

  10. Y. Q. Guo, Y. M. Pan, and S. Y. Zheng, “Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 10, pp. 7017–7026, Oct. 2020.

    Article  Google Scholar 

  11. R. Chopra and G. Kumar, “Series-and corner-fed planar microstrip antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 9, pp. 5982–5990, Sep. 2019.

    Article  Google Scholar 

  12. J. Xu, W. Hong, Z. H. Jiang, and H. Zhang, “Millimeter-wave broadband substrate integrated magneto-electric dipole arrays with corporate low-profile microstrip feeding structures,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 10, pp. 7056–7067, Oct. 2020.

    Article  Google Scholar 

  13. Q. Zhu, K. B. Ng, C. H. Chan, and K. M. Luk, “Substrate-integrated-waveguide-fed array antenna covering 57–71 GHz band for 5G applications,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6298–6306, Dec. 2017.

    Article  Google Scholar 

  14. Y. Qiu and B. Li, “E-band microstrip patch array antenna based on hybrid feeding network,” Proceedings of IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 20–23 Sep. 2020, pp. 1–3.

    Google Scholar 

  15. J. Wu, Y. J. Cheng, and Y. Fan, “A wideband high-gain high-efficiency hybrid integrated plate array antenna for V-band inter-satellite links,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1225–1233, Apr. 2015.

    Google Scholar 

  16. R. J. Mailloux, Phased Array Antenna Handbook. Artech House, 2nd Edition, USA, pp. 93–152, 2005.

    Google Scholar 

  17. D. M. Pozar, Microwave Engineering. John Wiley & Sons, 4th Edition, USA, pp. 328–332, 2012.

    Google Scholar 

  18. M. H. Prio, M. M. U. Rashid, L. C. Paul, and A. K. Sarkar, “Total efficiency comparison of different shaped microstrip patch antennas having defected ground structure,” Proceedings of IEEE International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, Bangladesh, 04–06 Nov. 2015, pp. 265–268.

    Google Scholar 

  19. K. R. Jha and G. Singh, “Effect of low dielectric permittivity on microstrip antenna at terahertz frequency,” Optik-International Journal for Light and Electron Optics, vol. 124, no. 22, pp. 5777–5780, Apr. 2013.

    Article  Google Scholar 

  20. R. Shafique, K. Kanwar, F. Hussain, R. Morales-Menendez, M. K. Siddiqui, H. J. Arain, and M. Mehrotra, “Comparison of different feeding techniques for a patch antenna at an X frequency band to evaluate its quantitative impact on the antenna’s parameters,” Journal of Applied Research and Technology, vol. 18, no. 6, pp. 342–361, July 2021.

    Google Scholar 

  21. S. S. M. Khaleghi, G. Moradi, R. S. Shirazi, and A. Jafargholi, “Microstrip line impedance matching using ENZ metamaterials, design, and application,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 4, pp. 2243–2251, April 2019.

    Article  Google Scholar 

  22. K. D. Xu, H. Xu, Y. Liu, J. Li, and Q. H. Liu, “Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement,” IEEE Access, vol. 6, pp. 11624–11633, Jan. 2018.

    Article  Google Scholar 

  23. R. A. Panda and D. Mishra, “Log-periodic enhancement of a novel patch with square DGS for Ku-band applications,” Journal of King Saud University - Engineering Sciences, pp. 1–8, March 2021.

    Google Scholar 

  24. G. Ahmad, M. I. Babar, M. Irfan, M. Ashraf, T. Jan, and S. W. Shah, “Bandwidth enhancement of patch antenna through various techniques for Ku-band application,” Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences A. Physical and Computational Sciences, vol. 55, no. 1, pp. 109–116, March 2018.

    Google Scholar 

  25. P. A. Ambresh, P. M. Hadalgi, and P. V. Hunagund, “Effect of slots on microstrip patch antenna characteristics,” Proceedings of IEEE International Conference on Computer, Communication and Electrical Technology (ICCCET), Tirunelveli, India, 18–19 March 2011, pp. 239–241.

    Google Scholar 

  26. D. M. Pozar and B. Kaufman, “Increasing the bandwidth of a microstrip antenna by proximity coupling,” Institution of Engineering and Technology Electronics Letters, vol. 23, no. 8, pp. 368 –369, April 1987.

    Google Scholar 

  27. M. K. A. Rahim and P. Gardner, “Microstrip bandwidth enhancement using a log-periodic technique with inset feed,” Journal Technology of University Technology Malaysia (UTM), pp. 53–66, 2004.

    Google Scholar 

  28. M. K. A. Rahim and P. Gardner, “The design of nine elements quasi microstrip log periodic antenna,” Proceedings of IEEE RF and Microwave Conference, Malaysia, 5–6 Oct. 2004, pp. 132–135.

    Google Scholar 

  29. D. Sharma and R. Kumar, “Design and analysis of five-element microstrip log-periodic antenna,” Proceedings of IEEE International Conference on Applications of Electromagnetism and Student Innovation Competition Awards (AEM2C), Taipei, 11–13 Aug. 2010, pp. 210–214.

    Google Scholar 

  30. S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Transactions Vehicular Technology, vol. 66, no. 7, pp. 5617–5625, July 2017.

    Article  Google Scholar 

  31. H. Song, and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Transactions Terahertz Science Technology, vol. 1, no. 1, pp. 256–263, Sep. 2011.

    Article  Google Scholar 

  32. L. K. S. Granados, “Antennas for Millimeter-Wave Applications,” Ph.D. Thesis, Electrical and Electronic Engineering, Santa María Tonantzintla University, Puebla, Mexico, pp. 1–89, 2016.

    Google Scholar 

  33. U. Nissanov, G. Singh, and A. Akinola, “Sixth-generation (6G) microstrip antenna with high-gain,” International Journal on Communications Antenna and Propagation, vol. 11, no. 4, pp. 279–287, Aug. 2021.

    Google Scholar 

  34. U. Nissanov, “6G Rotman lens D-band beam-steering microstrip antenna,” Springer Nature Journal of Computational Electronics, pp. 1–14, Jan. 2022.

    Google Scholar 

  35. U. Nissanov, G. Singh, and N. Kumar, “High gain microstrip array antenna with SIW and FSS for beyond 5G at THz band,” OPTIK: International Journal for Light and Electron Optics, vol. 236c, pp. 166568/1–13, March 2021.

    Google Scholar 

  36. X. Ding, J. An, X. Bu, H. Han, J. Liu, and Z. S. He, “A 16 × 16-element slot array fed by double-layered gap waveguide distribution network at 160 GHz,” IEEE Access, vol. 8, pp. 55372–55382, March 2020.

    Article  Google Scholar 

  37. B. Aqlan, M. Himdi, H. Vettikalladi, and L. Le-Coq, “A 300-GHz low-cost high-gain fully metallic Fabry–Perot cavity antenna for 6G terahertz wireless communications,” Scientific Reports, vol. 11, pp. 7703/1–9, April 2021.

    Article  Google Scholar 

  38. D. Warmowska, K. A. Abdalmalak, L. E. G. Munoz, and Z. Raida, “High-gain, circularly-polarized THz antenna with proper modeling of structures with thin metallic walls,” IEEE Access, vol. 8, pp. 125223–125233, July 2020.

    Article  Google Scholar 

  39. H. H. Bae, T. H. Jang, H. Y. Kim, and C. S. Park, “Broadband 120-GHz L-probe differential feed dual-polarized patch antenna with soft-surface,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 6185–6195, Oct. 2021.

    Article  Google Scholar 

  40. P. Lu, T. Haddad, B. Sievert, B. Khani, S. Makhlouf, S. Dülme, J. F. Estévez, A. Rennings, D. Erni, U. Pfeiffer, and A. Stöhr, “InP-based THz beam steering leaky-wave antenna,” IEEE Transactions on Terahertz Science and Technology, vol. 11. no. 2, pp. 218–230, Mar. 2021.

    Article  Google Scholar 

  41. J. Xiao, X. Li, Z. Qi, and Hua Zhu, “140-GHz TE340-mode substrate integrated cavities-fed slot antenna array in LTCC,” IEEE Access, vol. 7, pp. 26307–26313, Feb. 2019.

    Google Scholar 

  42. Z. W. Miao, Z. C. Hao, Y. Wang, B. B. Jin, J. B. Wu, and W. Hong, “A 400-GHz wideband high-gain quartz-established single-layered folded reflectarray antenna for terahertz,” IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 1, pp. 78–88, Nov. 2018.

    Article  Google Scholar 

  43. Yi-Wen Wu, Zhang-Cheng Hao, Ming-Cui Tao, Xiang Wang, and Jia-Sheng Hong, “A simple and accurate method for extracting super wideband electrical properties of the printed circuit board,” IEEE Access, vol. 7, pp. 57321–57331, April 2019.

    Google Scholar 

  44. D. Liu, B. Gaucher, U. Pfeiffer, and J. Grzyb, Advanced Millimeter-Wave Technologies Antennas, Packaging, and Circuits. John Wiley and Sons, UK, pp. 49–80, 2009.

    Book  Google Scholar 

  45. J. Francey and T. Bateman, “PCB technology requirements for millimeter-wave interconnect and antenna,” The PCB Magazine, pp. 36–42, Apr. 2017.

    Google Scholar 

  46. Isola Astra MT77- A Teflon Replacement, pp. 1–70, July 2017, http://www.microwavejournal.com/ext/resources/Webinars/2015a/SLIDES_Isola_21jul15.pdf.

  47. U. Nissanov, G. Singh, P. Kumar, and N. Kumar, “High-gain terahertz microstrip array antenna for future generation cellular communication,” Proceedings of IEEE International Conference on Artificial Intelligence, Big Data, Computing and Data Communication (icABCD 2020), Durban, South Africa, 6–7 Aug. 2020, pp. 1–6.

    Google Scholar 

  48. U. Nissanov, G. Singh, and A. Akinola, “Low sidelobe levels (SLLs) microstrip antennas for THz bio-sensors and THz communications,” Sensors International, vol. 2, pp. 100097/1–10, April 2021.

    Google Scholar 

  49. U. Nissanov and G. Singh, “MmWave/THz reconfigurable ultra-wideband (UWB) microstrip antenna,” Progress in Electromagnetic Research C, vol. 111, pp. 207–224, April 2021.

    Article  Google Scholar 

  50. U. Nissanov, G. Singh, E. Gelbart, and N. Kumar, “Highly directive microstrip array antenna with FSS for future generation cellular communication at THz band,” Wireless Personal Communications, vol. 118, no. 1, pp. 599–617, Jan. 2021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nissanov, U., Singh, G. (2023). Gain and Bandwidth Enhancement Techniques for Terahertz Planar Antenna for 6G Communication. In: Antenna Technology for Terahertz Wireless Communication. Springer, Cham. https://doi.org/10.1007/978-3-031-35900-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35900-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35899-9

  • Online ISBN: 978-3-031-35900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics