Skip to main content

Terahertz Communication: Standardization, Channel Modeling, and Link-Budget

  • Chapter
  • First Online:
Antenna Technology for Terahertz Wireless Communication
  • 384 Accesses

Abstract

This chapter presents the THz wireless communication standardization, potential applications, channel properties, modeling, and link budget. The THz potential communication applications can be chip-to-chip THz wireless communication, THz-WLAN, THz-WPAN, THz-kiosk downloading, THz wireless connections via servers inside a data center, THz backhauling and fronthaul for macro and small cells wireless communications, THz airborne, and inter-satellite wireless communications, THz autonomous vehicles, UAV’s wireless communications, and, finally, THz nano-cells wireless communication. The communication propagation distance can vary between a few cm indoors and several km outdoors. At the same time, the THz have some channel properties such as the FSPL, e.g., spreading loss, atmospheric absorption of the water vapor loss, and for communication proposes, we need to operate at frequency bands below 1000 GHz that atmosphere absorption loss needs to be below 100 dB/km. Therefore, the frequency windows are approximately: 100–117, 123–175, 190–320, 335–376, 385–443, 453–515, 627–711, and 808–902 GHz.

Furthermore, the THz channel properties are snow and rain, fog and cloud, blockage, diffraction, scattering, reflection, Doppler frequency shift effect, and DS, where all of these properties attenuate the THz wave signals. So, to make a reliable THz wireless backhauling and fronthaul communication, and based on the THz link budget and THz channel properties, there is a need to develop THz high-gain antennas with gains of at least 31.8–53.6 dB to facilitate reliable 6G LoS wireless communication with a data rate of 20–100 Gb/s and propagation distance of 100–300 m for 100–500 GHz. The THz wireless communication channel modeling can be a deterministic or stochastic model based on the RT scheme. Researchers are using THz channel simulators because setting up a standard THz wireless communication channel model is complex for the reasons described in this chapter and above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Petrov, T. Kürner, and I. Hosako, “IEEE 802.15.3d: first standardization efforts for sub-terahertz band communications toward 6G,” IEEE-Communications Magazine, vol. 58, no. 11, pp. 28–33, Nov. 2020.

    Article  Google Scholar 

  2. IEEE Std 802.15.3d–2017, “IEEE Standard for High Data Rate Wireless Multimedia Networks – Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer,” pp. 1–55, Oct. 2017, https://standards.ieee.org/ieee/802.15.3d/6648/

  3. C. Paoloni, A. Alexiou, O. Bouchet, A. Davy, V. Ermolov, T. Kürner, B. Napier, and O. Sahin, “ICT beyond 5G cluster: seven H2020 for future 5G,” TU Braunschweig University, pp. 1–2, 2018, https://doi.org/10.24355/dbbs.084-201908211514-0

  4. http://www.h2020-dream.eu/ict-09-2017-cluster/

  5. M. Katz, M. M. Blue, and M. L. Aho, “6Genesis Flagship Program: building the bridges towards 6G-enabled wireless smart society and ecosystem,” Proceedings of IEEE 10th Latin-American Conference on Communications (LATINCOM), Guadalajara, Mexico, 14–16 Nov. 2018, pp. 1–6.

    Google Scholar 

  6. H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M. Alouini, “Terahertz band: The last piece of RF spectrum puzzle for communication systems,” IEEE Open Journal of the Communications Society, vol. 1, pp. 1–32, Nov. 2019.

    Article  Google Scholar 

  7. Federal Communications Commission, Federal Register Rules and Regulation, vol. 84, no. 107, pp. 25685–25692, June 2019, https://www.govinfo.gov/content/pkg/FR-2019-06-04/pdf/2019-10925.pdf

  8. T. Kürner and A. Hirata, “On the impact of the results of WRC 2019 on THz communications,” Proceedings of IEEE in 3rd International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany, 01–02 July 2020, pp. 1–3.

    Google Scholar 

  9. M. Shehata, K. D. Wang, J. Webber, M. Fujita, T. Nagatsuma, and W. Withayachumnankul, “IEEE 802.15.3d-compliant waveforms for terahertz wireless communications,” IEEE Journal of Lightwave Technology, vol. 39, no. 24, pp. 7748–7760, Dec. 2021.

    Article  Google Scholar 

  10. Deliverable D7.3 Standardisation Activities – Final Release, TERRANOVA Project, pp. 1–43, July 2017, https://ict-terranova.eu/wp-content/uploads/2020/06/D7.3.pdf.

  11. T. Kürner and S. Priebe, “Towards THz communications - status in research, standardization, and regulation,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, pp. 53–62, Aug. 2014.

    Article  Google Scholar 

  12. V. Petrov, T. Kürner, and I. Hosako, “IEEE 802.15.3d: first standardization efforts for sub-terahertz band communications towards 6G,” [Online] arXiv, pp. 1–6, Dec. 2020, https://arxiv.org/pdf/2011.01683

  13. C. Yi, D. Kim, S. Solanki, J. H. Kwon, M. Kim, S. Jeon, Y. C. Ko, and I. Lee, “Design and performance analysis of THz wireless communication systems for chip-to-chip and personal area networks applications,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1785 – 1796, June 2021.

    Article  Google Scholar 

  14. H. J. Song; H.i Hamada, and M. Yaita, “Prototype of KIOSK data downloading system at 300 GHz: Design, technical feasibility, and results,” IEEE Communications Magazine, vol. 56, no. 6, pp. 130 – 136, June 2018.

    Article  Google Scholar 

  15. M. A. Salhi, T. K. Ostmann, and T. Schrader, “Propagation channel measurements in the mm and sub-mm wave range for different indoor communication scenarios,” Journal of Infrared, Millimeter, and Terahertz Waves, vol 42, pp. 357–370, Mar. 2021.

    Article  Google Scholar 

  16. Report ITU-R SM.2352-0, Technology Trends of Active Services in the Frequency Range 275–3000 GHz, pp. 1–25, June 2015, https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2352-2015-PDF-E.pdf

  17. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1728–1767, June 2022.

    Article  Google Scholar 

  18. F. A. Dicandia, N. J. G. Fonseca, M. Bacco, S. Mugnaini, and S. Genovesi, “Space-air-ground integrated 6G wireless communication networks: A review of antenna technologies and application scenarios,” Sensor, vol. 22, no. 9, pp. 3136/1–34, Apr. 2022.

    Article  Google Scholar 

  19. M. Civas and O. B. Akan, “Terahertz wireless communications in space,” ITU Journal on Future and Evolving Technologies, vol. 2, no. 7, pp. 1–8, Oct. 2021.

    Google Scholar 

  20. C. Zhang, K. Ota, J. Jia, and M. Dong, “Breaking the blockage for big data transmission: Gigabit road communication in autonomous vehicles,” IEEE Communications Magazine, vol. 56, no. 6, pp. 152–157, Jun. 2018.

    Article  Google Scholar 

  21. K. Yang, A. Pellegrini, M. Munoz, A. Brizzi, A. Alomainy, and Y. Hao, “Numerical analysis and characterization of THz propagation channel for body-centric nano-communications,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 3, pp. 419–426, 2015.

    Article  Google Scholar 

  22. F. Lemic, S. Abadal, W. Tavernier, P. Stroobant, D. Colle, E. Alarcón, J. M. Barja, and J. Famaey, “Survey on terahertz nano communication and networking: A top-down perspective,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1506–1643, April 2021.

    Article  Google Scholar 

  23. RF Enabling 6G – Opportunities and Challenges from Technology to Spectrum, White paper 6G Research Vision, no. 13, pp. 1–68, University of Oulu, Apr. 2021.

    Google Scholar 

  24. K. Tekbiyik, A. R. Ekti, G. K. Kurt, and A. Gorcin, “Terahertz band communication systems: challenges, novelties, and standardization efforts,” Physical Communication, vol. 35, pp. 100700/1–28, Apr. 2019.

    Article  Google Scholar 

  25. O. D. Oyeleke, S. Thomas, O. I. Bismark, P. Nzerem, and I. Muhammad, “Absorption, diffraction, and free space path losses modeling for the terahertz band,” International Journal of Engineering and Manufacturing, vol. 1, pp. 54–65, Feb. 2020.

    Google Scholar 

  26. Demos Serghiou, M. Khalily, Tim W C Brown, and R. Tafazolli, “Terahertz channel propagation phenomena, measurement techniques, and modeling for 6G wireless communication applications: a survey, open challenges, and future research directions,” IEEE Communication Surveys & Tutorials, vol. 24, no. 4, pp. 1957–1996, Fourth Quarter 2022.

    Google Scholar 

  27. Attenuation by Atmospheric Gases, International Telecommunication Union ITU-R Recommendation P.676-10, pp. 1–22, Sep. 2013, [online] available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-10-201309-S!!PDF-E.pdf

  28. M. Mandehgar, Y. Yang, and D Grischkowsky, “Experimental confirmation and physical understanding of ultra-high bit rate impulse radio in the THz digital communication channels of the atmosphere,” Journal of Optics, vol. 16, pp. 094004/1–17, July 2014.

    Google Scholar 

  29. M. Mandehgar and D. R. Grischkowsky, “Understanding dispersion compensation of the THz communication channels in the atmosphere,” IEEE Photonics Technology Letters, vol. 27, no. 22, pp. 2387–2390, Nov. 2015.

    Article  Google Scholar 

  30. K. Strecker, “Group Velocity Dispersion Management in Terahertz Wireless Communication Channels,” M.Sc. Electrical and Electronic Engineering Dissertation, Oklahoma State University, USA, pp. 1–52, May 2020.

    Google Scholar 

  31. Y. Ghasempour, Y. Amarasinghe, C. Y. Yeh, E. Knightly, and D. M. Mittleman, “Line-of-sight and non-line-of-sight links for dispersive terahertz wireless networks,” APL Photonics, vol. 6, pp. 041304/1–8, March 2021.

    Article  Google Scholar 

  32. J. Ma, J. Adelberg, R. Shrestha, L. Moeller, and D. M. Mittleman, “The effect of snow on a terahertz wireless data link,” Journal of Infrared Millimeter Terahertz Waves, vol. 39, pp. 505–508, March 2018.

    Article  Google Scholar 

  33. Specific attenuation model for rain prediction methods, International Telecommunication Union ITU-R Recommendation P.838-3, pp. 1–8, Mar. 2005, [online] available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf.

  34. Specific attenuation model for clouds and fog prediction methods, International Telecommunication Union ITU-R Recommendation P.840-3, pp. 1–7, 1997, https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.840-3-199910-S!!PDF-E.pdf.

  35. G. A. Siles, J. M. Riera, and P. García-del-Pino, “Atmospheric attenuation in wireless communication systems at millimeter and THz frequencies,” IEEE Antennas and Propagation Magazine, vol. 57, no. 1, pp. 48 – 61, Feb. 2015.

    Article  Google Scholar 

  36. H. Liebe, G. Hufford, and M. Cotton, “Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz,” Proceedings of AGARD, 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel, May 1993, pp. 3-1–3-11.

    Google Scholar 

  37. T. Schneider, A. Wiatrek, S. Preubler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Transactions on Terahertz Science and Technology, vol. 2, no. 2, pp. 250–256, March 2012.

    Article  Google Scholar 

  38. H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, “6G wireless systems: vision, requirements, challenges, insights, and opportunities,” Proceeding of the IEEE, vol. 109, no. 7, pp. 1166–1199, July 2021.

    Article  Google Scholar 

  39. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2, pp. 74–80, Feb. 2014.

    Article  Google Scholar 

  40. S. Tripathi, N. V. Sabu, A.K. Gupta, and H. S. Dhillon, Millimeter-Wave and Terahertz Spectrum for 6G Wireless. Ed by Y. Wu et al. 6G Mobile Wireless Networks: Computer Communications and Networks. Springer, Cham, Feb. 2021.

    Google Scholar 

  41. Tersence, “Attenuation of terahertz radiation in various materials,” [Online], Feb. 2018, http://terasense.com/news/attenuation-terahertz/

  42. Y. Xing and T. S. Rappaport, “Propagation measurements and path loss models for sub-THz in urban microcells,” Proc. of the IEEE International Conference on Communications (ICC 2021), Montreal, QC, Canada, 14–23 June 2021, pp. 1–6.

    Google Scholar 

  43. I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, “Millimeter-wave communications: physical channel models, design considerations, antenna constructions, and link-budget,” IEEE Communications Surveys and Tutorials, vol. 20, no. 2, pp. 870–913, Dec. 2017.

    Article  Google Scholar 

  44. M. A. Salhi, T. K. Ostmann, and T. Schrader, “Propagation channel measurements in the mm and sub-mm wave range for different indoor communication scenarios,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 42, pp. 357–370, March 2021.

    Article  Google Scholar 

  45. J. Kokkoniemi, P. Rintanen, J. Lehtomaki, and M. Juntti, “Diffraction effects in terahertz band - measurements and analysis,” Proceedings of IEEE Global Communications Conference (GLOBECOM), Washington DC, USA, 04–08 December 2016, pp. 1–6.

    Google Scholar 

  46. J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz wireless links using diffuse scattering from rough surfaces,” IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 5 pp. 463–470, Sept. 2019.

    Article  Google Scholar 

  47. S. Farahani, ZigBee Wireless Networks and Transceivers. Chapter 5- RF Propagation, Antennas, and Regulatory Requirements. Elsevier, Amsterdam, pp. 171–206, Sep. 2008.

    Google Scholar 

  48. J. Jeon, K. Muhammad, J. Cho, G. Xu, I. Na, and J. Zhang, “Design considerations for terahertz wireless communication systems,” Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, S. Korea, 06–09 April 2020, pp. 1–5.

    Google Scholar 

  49. V. Va, T. Shimizu, G. Bansal, and R. W. Heath Jr., “Millimeter wave vehicular communications: A survey,” Foundations and Trends in Networking, vol. 10, no. 1, pp. 1–113, 2015.

    Article  Google Scholar 

  50. E. Basar, “Reconfigurable intelligent surfaces for Doppler effect and multipath fading mitigation,” Front. Comms. Net., vol. 2, pp. 672857/1–12, May 2021.

    Article  Google Scholar 

  51. S. Priebe, M. Jacob, and T. Kürner, “Angular and RMS delay spread modeling in view of THz indoor communication systems,” Radio Science, vol. 49, pp. 242–251, Feb. 2014.

    Article  Google Scholar 

  52. K. Wang, C. T. Lam, and B. K. Ng, “Positioning information based high-speed communications with multiple RISs: Doppler mitigation and hardware impairments,” Applied Sciences, vol. 12, pp. 7076/1–25, July 2022.

    Google Scholar 

  53. K. Guan, H. Yi, D. He, B. Ai, and Z. Zhong, “Towards 6G: paradigm of realistic terahertz channel modeling,” IEEE China Communications, vol. 18, no. 5, pp. 1–18, May 2021.

    Article  Google Scholar 

  54. B. Peng, S. Rey, T. Kurner, “Channel characteristics study for future indoor millimeter and submillimeter wireless communications,” Proceedings of IEEE 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016, pp. 1–5.

    Google Scholar 

  55. S. Nie and I. F. Akyildiz, “Three-dimensional dynamic channel modeling and tracking for terahertz band indoor communications,” Proceedings of IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, Canada 08–13 October 2017, pp. 1–5.

    Google Scholar 

  56. D. He, K. Guan, A. Fricke, B. Ai, R. He, Z. Zhong, A. Kasamatsu, I. Hosako, and T. Kurner, “Stochastic channel modeling for kiosk applications in the terahertz band,” IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5, pp. 502–513, July 2017.

    Article  Google Scholar 

  57. R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch; J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas and Propagation Magazine, vol. 49, no. 6, pp. 24–39, Dec. 2007.

    Article  Google Scholar 

  58. F. Sheikh, B. Salah, D. Lessy, and T. Kaiser, “Unexplored aspects in THz ray-tracing,” Proceedings of 4th International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany, 05–06 July 2021, pp. 1–7.

    Google Scholar 

  59. A. Goldsmith, Wireless Communications. Cambridge University Press, USA, pp. 35–79, 2005.

    Google Scholar 

  60. J. F. O’Hara, S. Ekin, W. Choi, and I. Song, “A perspective on terahertz next-generation wireless communications,” Technologies, vol. 7, pp. 43/1–18, June 2019.

    Article  Google Scholar 

  61. E. N. Papasotiriou, A. A. A. Boulogeorgos, K. Haneda, M. F. de-Guzman, and A. Alexiou, “An experimentally validated fading model for THz wireless systems,” Scientific Reports, vol. 11, no. 18717, pp. 1–14, Sep. 2021.

    Google Scholar 

  62. S. Li and L. Yang, “Performance analysis of dual-hop THz transmission systems over α-μ fading channels with pointing errors,” IEEE Internet of Things Journal, vol. 9, no. 14, pp. 11772–11783, July 2022.

    Article  Google Scholar 

  63. C. Han and Y. Chen, “Propagation modeling for wireless communications in the terahertz band,” IEEE Communications Magazine, vol. 56, no. 6, pp. 96–101, June 2018.

    Article  Google Scholar 

  64. J. Bian, C.X. Wang, X. Gao, X. You, and M. Zhang, “A general 3D non-stationary wireless channel model for 5G and beyond,” IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 3211–3224, May 2021.

    Article  Google Scholar 

  65. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in-vivo hydration sensing,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 201–219, Sept. 2011.

    Article  Google Scholar 

  66. K. Yang, A. Pellegrini, M. O. Munoz, A. Brizzi, A. Alomainy, and Y. Hao, “Numerical analysis and characterization of THz propagation channel for body-centric nano-communications,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 3, pp. 419–426, May. 2015.

    Google Scholar 

  67. H. Elayan, R. M. Shubair, J. M. Jornet, and P. Johari, “Terahertz channel model and link budget analysis for intrabody nanoscale communication,” IEEE Transactions Nanobioscience, vol. 16, no. 6, pp. 491–503, Sep. 2017.

    Article  Google Scholar 

  68. J. Wang, C. X. Wang, J. Huang, and H. Wang, “A novel 3D space-time-frequency non-stationary channel model for 6G THz indoor communication systems,” Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Seoul, S. Korea, 25–28 May 2020, pp. 1–7.

    Google Scholar 

  69. T. Kürner, D. M. Mittleman, and Tadao Nagatsuma, THz Communications: Paving the Way Towards Wireless Tbps. Springer, Cham, Switzerland, 2022.

    Google Scholar 

  70. D. He, K. Guan, A. Fricke, B. Ai, R. He, Z. Zhong, A. Kasamatsu, I. Hosako, and T. Kurner, “Stochastic channel modeling for kiosk applications in the terahertz band,” IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5, pp. 502–513, July 2017.

    Article  Google Scholar 

  71. J. Kokkoniemi, A. A. A. Boulogeorgos, M. U. Aminu, J. Lehtomaki, A. Alexiou, and M. Juntti, “Stochastic analysis of indoor THz uplink with co-channel interference and phase noise,” Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 07–11 June 2020, pp. 1–6.

    Google Scholar 

  72. Z. Hossain, C. Mollica, and J. M. Jornet, “Stochastic multipath channel modeling and power delay profile analysis for terahertz-band communication,” Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication, Washington DC, USA, 27–29 Sept. 2017, pp. 1–7.

    Google Scholar 

  73. https://www.remcom.com/wireless-insite-em-propagation-software/33

  74. F. Sheikh, N. Zarifeh, and T. Kaiser, “Terahertz band: Channel modeling for short-range wireless communications in the spectral windows,” IET Microwaves, Antennas, and Propagation, vol. 10, no. 13, pp. 1435 – 1444, July 2016.

    Article  Google Scholar 

  75. S. Tarboush, H. Sarieddeen, H. Chen, M. H. Loukil, H. Jemaa, M. S. Alouini, and T. Y. Al-Naffouri, “TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 12325 –12341, Dec. 2021.

    Article  Google Scholar 

  76. T. T. Ha, Theory and Design of Digital Communication Systems. Cambridge University Press, New York, USA, pp. 127–146, 2011.

    Google Scholar 

  77. H. J. Song and T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications. Taylor & Francis Group, UK, 2015.

    Book  Google Scholar 

  78. Z. Xu, “Antenna Designs and Channel Modeling for Terahertz Wireless Communications,” Ph.D. Electric and Electronic Engineering Thesis, University of Victoria, Canada, 2016.

    Google Scholar 

  79. M. F. Hermelo, P. T. B. Shih, M. Steeg, A. Ngoma, and A. Stöhr, “Spectral efficient 64-QAM-OFDM terahertz communication link,” Optics Express, vol. 25, no. 16, pp. 19360–19370, Mar. 2017.

    Article  Google Scholar 

  80. W. Tong and P. Zhu, 6G The Next Horizon: From Connected People and Things to Connected Intelligence. Cambridge University Press, Apr. 2021.

    Book  Google Scholar 

  81. 6G: The next hyper-connected experience for all, Samsung 6G Vision White Paper, pp. 1–42, Jul. 2020. https://cdn.codeground.org/nsr/downloads/researchareas/6G%20Vision.pdf.

  82. J. Nishizawa, P. Płotka, T. Kurabayashi, and H. Makabe, “706-GHz GaAs CW fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” Current Topics in Solid-State Physics, vol. 5, no. 9, pp. 2802–2804, July 2008.

    Google Scholar 

  83. S. Chakraborty, A. Acharyya, A. Biswas, and A. K. Kundu, “Multi-stage-multi-iterative optimization algorithm for design optimization of multi-quantum well Terahertz IMPATT sources,” Proceeding of IEEE VLSI Device Circuit and System (VLSI DCS), Kolkata, India, 18–19 July 2020, pp. 129–133.

    Google Scholar 

  84. A. Shafie, N. Yang, C. Han, J. M. Jornet, M. Juntti, and T. Kürner, “Terahertz communications for 6G and beyond wireless networks: Challenges, key advancements, and opportunities,” IEEE Networks, pp. 1–8, Sept. 2022.

    Google Scholar 

  85. I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band communication: An old problem revisited and research directions for the next decade,” IEEE Transactions on Communications, vol. 70, no. 6, pp. 4250–4285, June 2022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nissanov, U., Singh, G. (2023). Terahertz Communication: Standardization, Channel Modeling, and Link-Budget. In: Antenna Technology for Terahertz Wireless Communication. Springer, Cham. https://doi.org/10.1007/978-3-031-35900-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35900-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35899-9

  • Online ISBN: 978-3-031-35900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics