Skip to main content

TextureAda: Deep 3D Texture Transfer for Ideation in Product Design Conceptualization

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Abstract

In the product design life-cycle, the conceptual design stage is an important and time-consuming phase where designers ideate in the form of sketches and 3D renderings of a product. Specifically, with 3D renderings, the choice of material texture and color is an important aspect that is often critiqued by designers because it impacts the product’s visual aesthetic and the impression it evokes in the customer when first viewing the product; thus, making material selection and the conceptual design stage, overall, challenging. In this study, we turn to deep texture synthesis for generating material textures and propose a novel method, TextureAda. TextureAda creates high-fidelity textures by performing adaptive instance normalization between multiple layers of a texture generator and a pre-trained image encoder. Our experiments show that our method beats previous methods in texture synthesis visually and quantitatively. Lastly, we show how TextureAda can be applied for ideation in product design conceptualization by material texturing 3D models of furniture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, M., Johnson, K.: The art of materials selection. Mater. Today 6(12), 24–35 (2003). https://doi.org/10.1016/S1369-7021(03)01223-9

    Article  Google Scholar 

  2. Bergmann, U., Jetchev, N., Vollgraf, R.: Learning texture manifolds with the periodic spatial GAN. In: 34th International Conference on Machine Learning, ICML 2017, vol. 1, pp. 722–730 (2017)

    Google Scholar 

  3. Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-based texture mapping. ACM Trans. Graph. 36(4) (2017). https://doi.org/10.1145/3072959.3073610

  4. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  5. Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer, pp. 1–12 (2019). https://nv-tlabs.github.io/DIB-R/

  6. Chen, Y., Chen, R., Lei, J., Zhang, Y., Jia, K.: TANGO: text-driven photorealistic and robust 3D stylization via lighting decomposition. In: NeurIPS, pp. 1–13 (2022). http://arxiv.org/abs/2210.11277

  7. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014). https://doi.org/10.1109/CVPR.2014.461

  8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001 (August), pp. 341–346 (2001). https://doi.org/10.1145/383259.383296

  9. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the IEEE International Conference on Computer Vision 2(September), 1033–1038 (1999). https://doi.org/10.1109/iccv.1999.790383

  10. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Houdard, A., Leclaire, A., Papadakis, N., Rabin, J.: Wasserstein generative models for patch-based texture synthesis, pp. 269–280 (2021)

    Google Scholar 

  13. Houdard, A., Leclaire, A., Papadakis, N., Rabin, J.: A generative model for texture synthesis based on optimal transport between feature distributions. J. Math. Imaging Vis. (2022). https://doi.org/10.1007/s10851-022-01108-9

    Article  MATH  Google Scholar 

  14. Hu, R., Su, X., Chen, X., Van Kaick, O., Huang, H.: Photo-to-shape material transfer for diverse structures. ACM Trans. Graph. 41(4) (2022). https://doi.org/10.1145/3528223.3530088

  15. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1510–1519 (2017)

    Google Scholar 

  16. Jetchev, N.: ClipMatrix: Text-controlled creation of 3D textured meshes (2021). http://arxiv.org/abs/2109.12922

  17. Jin, B., Tian, B., Zhao, H., Zhou, G.: Language-guided semantic style transfer of 3D indoor scenes, pp. 11–17 (2022). https://doi.org/10.1145/3552482.3556555

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution, pp. 694–711 (2016)

    Google Scholar 

  19. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer, pp. 3907–3916 (2018). https://doi.org/10.1109/CVPR.2018.00411

  20. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  21. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003). https://doi.org/10.1145/882262.882264

    Article  Google Scholar 

  22. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Diversified texture synthesis with feed-forward networks (2017)

    Google Scholar 

  23. Lin, J., Sharma, G., Pappas, T.N.: Towards universal texture synthesis by combining Texton broadcasting with noise injection in StyleGAN-2 (2022). http://arxiv.org/abs/2203.04221

  24. Liu, S., Chen, W., Li, T., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning 2019-Octob, 7707–7716 (2019). https://doi.org/10.1109/ICCV.2019.00780

  25. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2Mesh: text-driven neural stylization for meshes, 13492–13502 (2022). https://arxiv.org/abs/2112.03221

  26. Milton, A., Rodgers, P.: Product design. Laurence King Publishing (2011)

    Google Scholar 

  27. Mir, A., Alldieck, T., Pons-Moll, G.: Learning to transfer texture from clothing images to 3D humans. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7021–7032 (2020). https://doi.org/10.1109/CVPR42600.2020.00705

  28. Mordvintsev, A., Niklasson, E., Randazzo, E.: Texture generation with neural cellular automata (2021). http://arxiv.org/abs/2105.07299

  29. Perroni-Scharf, M., Sunkavalli, K., Eisenmann, J., Hold-Geoffroy, Y.: Material swapping for 3D scenes using a learnt material similarity measure. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 2033–2042 (2022). https://doi.org/10.1109/CVPRW56347.2022.00221

  30. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021). http://arxiv.org/abs/2103.00020

  31. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. ArXiv abs/2204.06125 (2022)

    Google Scholar 

  32. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models, 10674–10685 (2022). https://doi.org/10.1109/cvpr52688.2022.01042

  33. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding (2022). http://arxiv.org/abs/2205.11487

  34. Schuhmann, C., et al.: LAION-400M: open dataset of CLIP-Filtered 400 million image-text Pairs, 1–5 (2021). http://arxiv.org/abs/2111.02114

  35. Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from a single natural image 2019-Octob, 4569–4579 (2019). https://doi.org/10.1109/ICCV.2019.00467

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  37. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  38. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: feed-forward synthesis of textures and stylized images (2016)

    Google Scholar 

  39. Virtusio, J.J., Tan, D.S., Cheng, W.H., Tanveer, M., Hua, K.L.: Enabling artistic control over pattern density and stroke strength. In: IEEE Transactions on Multimedia (2020)

    Google Scholar 

  40. Wang, T.Y., Su, H., Huang, Q., Huang, J., Guibas, L., Mitra, N.J.: Unsupervised texture transfer from images to model collections. ACM Trans. Graph. 35(6) (2016). https://doi.org/10.1145/2980179.2982404

  41. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pp. 479–488 (2000). https://doi.org/10.1145/344779.345009

  42. Yeh, Y.Y., et al.: PhotoScene: photorealistic material and lighting transfer for indoor scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18541–18550 (2022). https://doi.org/10.1109/cvpr52688.2022.01801

  43. Yin, K., Gao, J., Shugrina, M., Khamis, S., Fidler, S.: 3DStyleNet: creating 3D shapes with geometric and texture style variations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 12436–12445 (2021). https://doi.org/10.1109/ICCV48922.2021.01223

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rgee Wharlo Gallega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallega, R.W., Azcarraga, A., Sumi, Y. (2023). TextureAda: Deep 3D Texture Transfer for Ideation in Product Design Conceptualization. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14050. Springer, Cham. https://doi.org/10.1007/978-3-031-35891-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35891-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35890-6

  • Online ISBN: 978-3-031-35891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics