Skip to main content

Nonparametric Methods: A Selected Overview

  • Chapter
  • First Online:
Statistical Learning in Genetics

Part of the book series: Statistics for Biology and Health ((SBH))

  • 594 Accesses

Abstract

Throughout this book a phrase like “assume the data have been generated by the following probability model” has been abundantly used. Indeed, the standard parametric assumption is that observed data represent one realisation from some given probability model and the goal can be to infer the parameters of the model. Alternatively and from a classical frequentist setting, conditionally on estimated parameters, the goal may be to predict future observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernard E (2021) Introduction to machine learning. Wolfram Media, Champaign

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    MATH  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    MATH  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM (2009) Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci 87:1883–1887

    Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308

    Google Scholar 

  • Duvenaud D, Lloyd JR, Grosse R, Tenenbaum JB, Ghahramani Z (2013) Structure discovery in nonparametric regression through compositional kernel search. ArXiv:1302.4922

    Google Scholar 

  • Gianola D, de los Campos G (2008) Inferring genetic values for quantitative traits non-parametrically. Genet Res 90:525–540

    Google Scholar 

  • Gianola D, Fernando R, Schön CC (2020) Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression. Theor Popul Biol 132:47–59

    MATH  Google Scholar 

  • Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res Proc Track 9:249–256

    Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York, p 745

    MATH  Google Scholar 

  • Henderson CR, Kempthorne O, Searle SR, Von Krosigk CN (1959) Estimation of environmental and genetic trends from records subject to culling. Biometrics 15:192–218

    MATH  Google Scholar 

  • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:e1000008

    Google Scholar 

  • Hu Z, Zhang J, Ge Y (2021) Handling vanishing gradient problem using artificial derivative. IEEE Access 9:22,371–22,377

    Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2017) An introduction to statistical learning. Springer, Berlin

    MATH  Google Scholar 

  • Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33:82–95

    MathSciNet  MATH  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Google Scholar 

  • López OAM, López AM, Crossa J (2022) Mulitivariate statistical machine learning methods for genomic prediction. Springer, Berlin

    Google Scholar 

  • Mäki-Tanila A, Hill WG (2014) Influence of gene interaction on complex trait variation with multilocus models. Genetics 198:355–367

    Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    MathSciNet  MATH  Google Scholar 

  • Neal RM (1996) Bayesian learning for neural networks. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Perez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495

    Google Scholar 

  • Perez-Elizalde S, Cuevas J, Perez-Rodriguez P, Crossa J (2015) Selection of the bandwidth parameter in a Bayesian regression model for genomic-enabled prediction. J Agric Biol Environ Stat 20:512–532

    MathSciNet  MATH  Google Scholar 

  • Rousseauw J, du Plessis J, Benade A, Jordaan P, Kotze J, Jooste P (1983) Coronary risk factor screening in three rural communities. S Afr Med J 64:430–436

    Google Scholar 

  • Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagation. Nature 323:533–536

    MATH  Google Scholar 

  • Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

    MATH  Google Scholar 

  • Zhao T, Fernando R, Cheng H (2021) Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies. G3. https://doi.org/10.1093/g3journal/jkab228

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorensen, D. (2023). Nonparametric Methods: A Selected Overview. In: Statistical Learning in Genetics. Statistics for Biology and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-35851-7_11

Download citation

Publish with us

Policies and ethics