Skip to main content

Abstract

Starch from different food/plant sources varies in their physicochemical as well as nutritional properties. The inherently imperfect nature of high amylose starch limits its industrial application. In order to achieve the desired characteristics of starch, food industries prefer starch modification as per the requirement of specific food processing. There are different methods, i.e., physical, chemical and enzymatic, developed till date for the modification of starch; however, dry heat treatment (DHT) of starch is preferred the most in the current scenario as it avoids the generation of environmental hazards as well as human health risks, and also economical as compared to other modification methods. Researchers found that the DHT of starch with and without ionic gums (carboxymethyl cellulose, guar gum, sodium alginate, xanthan gum, etc.) significantly improve the various physic-chemical properties, i.e., solubility, pasting viscosity, gelatinization temperature, solubility, etc. while slow down the starch digestibility. A significant effect of DHT on starch granule distribution and size of granules from different starch sources was also recorded. DHT can be a very promising method for modification of starch to get desired physic-chemical properties. The current chapter gives a wide insight into changes in starch properties due to DHT alone and in combination with ionic gum pre-treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abegunde, O. K., Mu, T. H., Chen, J. W., & Deng, F. M. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33(2), 169–177.

    Article  CAS  Google Scholar 

  • Alan, K. S., Subbiah, J., & Schmidt, K. A. (2019). Application of a dry heat treatment to enhance the functionality of low-heat nonfat dry milk. Journal of Dairy Science, 102(2), 1096–1107.

    Article  CAS  Google Scholar 

  • Arora, P., Sehgal, S., & Kawatra, A. (2002). The role of dry heat treatment in improving the shelf life of pearl millet flour. Nutrition and Health, 16(4), 331–336.

    Article  PubMed  Google Scholar 

  • Bae, I. Y., & Lee, H. G. (2018). Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch. International Journal of Biological Macromolecules, 108, 568–575.

    Article  PubMed  Google Scholar 

  • BeMiller, J. N. (1997). Starch modification: Challenges and prospects. Starch/Starke, 49, 127–131.

    Article  CAS  Google Scholar 

  • Boyd, L., Storsley, J., & Ames, N. (2017). Effect of heat treatments on starch pasting, particle size, and color of whole-grain barley. Cereal Chemistry, 94, 325–332.

    Article  CAS  Google Scholar 

  • Bucsella, B., Takács, Á., Vizer, V., Schwendener, U., & Tömösközi, S. (2016). Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chemistry, 190, 990–996.

    Article  CAS  PubMed  Google Scholar 

  • Chandanasree, D., Gul, K., & Riar, C. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydocolloid, 52, 175–182.

    Article  CAS  Google Scholar 

  • Chen, X., He, X., Fu, X., & Huang, Q. (2015). In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. Journal of Cereal Science, 63, 109–115.

    Article  CAS  Google Scholar 

  • Chesterton, A. K. S., Wilson, D. I., Sadd, P. A., & Moggridge, G. D. (2015). A novel laboratory scale method for studying heat treatment of cake flour. Journal of Food Engineering, 144(1), 36–44.

    Article  CAS  Google Scholar 

  • Chiu, C. W., Schiermeyer, E., Thomas, D. J., & Shah, M. B. U. S. (1998). U.S. Patent, 5,725,676.

    Google Scholar 

  • Chiu, C. W., Schiermeyer, E., Thomas, D. J., Shah, M. B., Hanchett, D. J., & Jeffcoat, R. (1999). U.S. Patent 5,932,017.

    Google Scholar 

  • Chung, S. Y., Han, S. H., Lee, S. W., & Rhee, C. (2012). Effect of Maillard reaction products prepared from glucose–glycine model systems on starch digestibility. Starch-Stärke, 64(8), 657–664.

    Article  CAS  Google Scholar 

  • Dutta, H., Mahanta, C. L., Singh, V., Das, B. B., & Rahman, N. (2016). Physical, physic-chemical and nutritional characteristics of Bhoja chaul, a traditional ready-to-eat dry heat parboiled rice product processed by an improvised soaking technique. Food Chemistry, 191, 152–162.

    Article  CAS  PubMed  Google Scholar 

  • Gong, B., Xu, M., Li, B., Wu, H., Liu, Y., Zhang, G., Ouyang, S., & Li, W. (2017). Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Research International, 102, 776–784.

    Article  CAS  PubMed  Google Scholar 

  • González, M., Vernon-Carter, E. J., Alvarez-Ramirez, J., & Carrera-Tarela, Y. (2021). Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. International Journal of Biological Macromolecules, 166, 1439–1447.

    Article  PubMed  Google Scholar 

  • Gou, M., Wu, H., Salesh, A. S. M., Jing, L., Lui, Y., Zhao, K., Su, C., Zhang, B., Jiang, H., & Lo, W. (2019). Effects of repeated and continuous dry heat treatments on properties of sweet potato starch. Biological Macromolecules, 129, 869–877. https://doi.org/10.1016/j.ijbiomac.2019.01.225

    Article  CAS  Google Scholar 

  • Gu, F., Li, C., Hamaker, B. R., Gilbert, R. G., & Zhang, X. (2020). Fecal microbiota responses to rice RS3 are specific to amylose molecular structure. Carbohydrate Polymers, 243, 116475.

    Article  CAS  PubMed  Google Scholar 

  • Gul, K., Riar, C. S., Bala, A., & Sibian, M. S. (2014). Effect of ionic gums and dry heating on physico-chemical, morphological, thermal and pasting properties of water chestnut starch. LWT Food Science and Technology, 59, 348–355.

    Article  CAS  Google Scholar 

  • Hoover, R., & Manuel, H. (1996). Effect of heat—Moisture treatment on the structure and physicochemical properties of legume starches. Food Research International, 29(8), 731–750.

    Article  CAS  Google Scholar 

  • Jeanjean, M. F., Damidaux, R., & Feillet, P. (1980). Effect of heat treatment on protein solubility and viscoelastic properties of wheat gluten. Cereal Chemistry, 57(5), 325–331.

    CAS  Google Scholar 

  • Ji, Y., Yu, J., Xu, Y., & Zhang, Y. (2016). Impact of dry heating on physicochemical properties of corn starch and lysine mixture. International Journal of Biological Macromolecules, 91, 872–876.

    Article  CAS  PubMed  Google Scholar 

  • Kadlag, R. V., Chavan, J. K., & Kachare, D. P. (1995). Effect of seed treatments and storage on the changes in lipids of pearl millet meal. Plant Foods for Human Nutrition, 45, 279–285.

    Article  Google Scholar 

  • Kim, S. H., Lee, B. H., Baik, M. Y., Joo, M. H., & Yoo, S. H. (2007). Chemical structure and physical properties of mung bean starches isolated from 5 domestic cultivars. Journal of Food Science, 72(9), C471–C477.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Zhang, H., Shoemaker, C. F., Xu, Z., Zhu, S., & Zhong, F. (2013). Effect of dry heat treatment with xanthan on waxy rice starch. Carbohydrate Polymers, 92(2), 1647–1652.

    Article  CAS  PubMed  Google Scholar 

  • Liang, S., Su, C., Saleh, A. S., Wu, H., Zhang, B., Ge, X., & Li, W. (2021). Repeated and continuous dry heat treatments induce changes in physicochemical and digestive properties of mung bean starch. Journal of Food Processing and Preservation, 45(3), e15281. https://doi.org/10.1111/jfpp.15281

    Article  CAS  Google Scholar 

  • Lei, N., Chai, S., Xu, M., Ji, J., Mao, H., Yan, S., ... & Sun, B. (2020). Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. International Journal of Biological Macromolecules, 147, 109–116.

    Google Scholar 

  • Lim, H. S., Han, J. A., BeMiller, J. N., & Lim, S. T. (2006). Physical modification of waxy maize starch by dry heating with ionic gums. Journal of Applied Glycoscience, 53(4), 281–286.

    Article  CAS  Google Scholar 

  • Liu, H., Lv, M., Wang, L., Li, Y., Fan, H., & Wang, M. (2016). Comparative study: How annealing and heat-moisture treatment affect the digestibility, textural, and physicochemical properties of maize starch. Starch-Starke, 68(11–12), 1158–1168.

    Article  CAS  Google Scholar 

  • Liu, K., Hao, Y., Chen, Y., & Gao, Q. (2019). Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. Biological macromolecules, 132, 1044–1050. https://doi.org/10.1016/j.ijbiomac.2019.03.146

    Article  CAS  Google Scholar 

  • Liu, W., Pan, W., Li, J., Chen, Y., Yu, Q., Xiao, W., Wen, H., & Xie, J. (2022a). Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Current Research in Food Science, 5, 28–33.

    Article  PubMed  Google Scholar 

  • Liu, W., Zhang, Y., Wang, R., Li, J., Pan, W., Zhang, X., Xiao, W., Wen, H., & Xie, J. (2022b). Chestnut starch modification with dry heat treatment and addition of xanthan gum: Gelatinization, structural and functional properties. Food Hydrocolloids, 124, 107205.

    Article  CAS  Google Scholar 

  • Maniglia, B. C., Lima, D. C., da Matta Júnior, M., Oge, A., Le-Bail, P., Augusto, P. E., & Le-Bail, A. (2020a). Dry heating treatment: A potential tool to improve the wheat starch properties for 3D food printing application. Food Research International, 137, 109731.

    Article  CAS  PubMed  Google Scholar 

  • Maniglia, B. C., Lima, D. C., Junior, M. D. M., Le-Bail, P., Le-Bail, A., & Augusto, P. E. (2020b). Preparation of cassava starch hydrogels for application in 3D printing using dry heating treatment (DHT): A prospective study on the effects of DHT and gelatinization conditions. Food Research International, 128, 108803.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, C., Koshikawa, Y., & Seguchi, M. (2008). Increased volume of kasutera cake (Japanese sponge cake) by dry heating of wheat flour. Food Science and Technology Research, 14(5), 431–436.

    Article  CAS  Google Scholar 

  • Oh, I. K., Bae, I. Y., & Lee, H. G. (2017). Complexation of high amylose rice starch and hydrocolloid through dry heat treatment: Physical property and in vitro starch digestibility. Journal of Cereal Science, 79, 341–347.

    Article  Google Scholar 

  • Ozawa, M., Kato, Y., & Seguchi, M. (2009). Investigation of dry-heated hard and soft wheat flour. Starch – Stärke, 61(7), 398–406.

    Article  CAS  Google Scholar 

  • Pramodrao, K., & Riar, C. (2014). Comparative study of effect of modification with ionic gums and dry heating on the physicochemical characteristics of potato, sweet potato and taro starches. Food Hydrocolloid, 35, 613–619.

    Article  CAS  Google Scholar 

  • Pruthi, T. D. (1981). Free fatty acid changes during storage of bajra (Penmselum typhoideum) flour. Journal of Food Science and Technology, 18(6), 257–258.

    CAS  Google Scholar 

  • Purhagen, J. K., Sjöö, M. E., & Eliasson, A. C. (2011). The use of normal and heat treated barley flour and waxy barley starch as anti-staling agents in laboratory and industrial baking processes. Journal of Food Engineering, 104(3), 414–421.

    Article  CAS  Google Scholar 

  • Qiu, C., Cao, J., Xiong, L., & Sun, Q. (2015). Differences in physicochemical, morphological, and structural properties between rice starch and rice flour modified by dry heat treatment. Starch-Starke, 67, 756–764.

    Article  CAS  Google Scholar 

  • Rao, H., Sindhu, R., & Panwar, S. (2022). Morphology and functionality of dry heat-treated and oxidized quinoa starches. Journal of Food Processing Preservation, e16672. https://doi.org/10.1111/jfpp.16672

  • Rasper, V. (1971). Investigations on starches from major starch crops grown in Ghana: III.—Particle size and particle size distribution. Journal of the Science of Food and Agriculture, 22(11), 572–580.

    Article  Google Scholar 

  • Seguchi, M. (2001). Oil binding ability of chlorinated and heated wheat starch granules and their use in breadmaking and pancake baking. Starch-Stärke, 53(9), 408–413.

    Article  CAS  Google Scholar 

  • Singh, S., & Goyal, M. (2005). Potential of using pearl millet in the development of value added flour products. Paper presented at the conference on alternative use of pearl millet, 30th July 200, RAU, Bikaner.

    Google Scholar 

  • Singh, H., Chang, Y. H., Lin, J.-H., Singh, N., & Singh, N. (2011). Influence of heat–moisture treatment and annealing on functional properties of sorghum starch. Food Research International, 44, 2949–2954.

    Article  CAS  Google Scholar 

  • Su, J., Chotineeranat, S., Laoka, B., Chatakanonda, P., Vanichsriratana, W., Sriroth, K., & Piyachomkwan, K. (2018). Effect of dry heat treatment with xanthan gum on physicochemical properties of different amylose rice starches. Starch-Stärke, 70(3–4), 1700142.

    Article  Google Scholar 

  • Sudha, M. L., Soumya, C., & Prabhasankar, P. (2016). Use of dry-moist heat effects to improve the functionality, immunogenicity of whole wheat flour and its application in bread making. Journal of Cereal Science, 69, 313–320.

    Article  CAS  Google Scholar 

  • Sun, Q., Si, F., Xiong, L., & Chu, L. (2013). Effect of dry heating with ionic gums on physicochemical properties of starch. Food Chemistry, 136(3–4), 1421–1425.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Gong, M., Li, Y., & Xiong, L. (2014a). Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydrate Polymers, 110, 128–134.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Xu, Y., & Xiong, L. (2014b). Effect of microwave-assisted dry heating with xanthan on normal and waxy corn starches. International Journal of Biological Macromolecules, 68, 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Trommsdorff, U., & Tomka, I. (1995). Structure of amorphous starch. 2. Molecular interactions with water. Macromolecules, 28(18), 6138–6150.

    Article  CAS  Google Scholar 

  • Vashisht, D., Pandey, A., Hermenean, A., Yáñez-Gascón, M. J., Pérez-Sánchez, H., & Kumar, K. J. (2017). Effect of dry heating and ionic gum on the physicochemical and release properties of starch from Dioscorea. International Journal of Biological Macromolecules, 95, 557–563. https://doi.org/10.1016/j.ijbiomac.2016.11.064

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Zhang, W., Adhikari, K., & Shi, Y. C. (2017). Determination of volatile compounds in heat-treated straight-grade flours from normal and waxy wheats. Journal of Cereal Science, 75, 77–83.

    Article  CAS  Google Scholar 

  • Xu, M., Saleh, A. S., Gong, B., Li, B., Jing, L., Gou, M., Jiang, H., & Li, W. (2018a). The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Research International, 111, 324–333.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., Saleh, A. S., Liu, Y., Jing, L., Zhao, K., Wu, H., Zhang, G., Yang, S. O., & Li, W. (2018b). The changes in structural, physicochemical, and digestive properties of red adzuki bean starch after repeated and continuous annealing treatments. Starch-Stärke, 70(9–10), 1700322.

    Article  Google Scholar 

  • Zavareze, E. D. R., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83, 317–328.

    Article  CAS  Google Scholar 

  • Zhou, W., Song, J., Zhang, B., Zhao, L., Hu, Z., & Wang, K. (2019). The impacts of particle size on starch structural characteristics and oil-binding ability of rice flour subjected to dry heating treatment. Carbohydrate Polymers, 223, 115053.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y. L., Cui, L. H., You, X. Y., Jiang, Z. H., Qu, W. H., Liu, P. D., et al. (2021). Effects of repeated and continuous dry heat treatments on the physicochemical and structural properties of quinoa starch. Food Hydrocolloids, 113, 106532.

    Article  CAS  Google Scholar 

  • Zou, J., Xu, M., Tian, J., & Li, B. (2019). Impact of continuous and repeated dry heating treatments on the physicochemical and structural properties of waxy corn starch. International Journal of Biological Macromolecules, 379–385. https://doi.org/10.1016/j.ijbiomac.2019.05.147

  • Zou, J., Xu, M., Tang, W., Wen, L., & Yang, B. (2020). Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chemistry, 309, 125733. https://doi.org/10.1016/j.foodchem.2019.125733

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, A.K., Thakur, S., Yadav, D.K. (2023). Dry Heat Treatment of Starch. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_7

Download citation

Publish with us

Policies and ethics