Skip to main content

Abstract

Over the past few decades, the adoption of enzymatic modification with partial replacement of physical and chemical methods has been trending due to enhanced yield with safe and healthier starch. In the enzymatic modification process, exposure of starch is employed to numerous enzymes (primarily hydratases), causing to accelerate the production of highly functional derivatives. The resultant process mainly involves the depolymerization of starch into oligosaccharides or the change of starch by shifting glycosidic linkages and residues. This chapter provides a comprehensive understanding of the enzymatic modification of starch, various enzymes used in the process, and, thereby, characteristics changes in terms of morphology, crystallinity, gelatinization, and rheological property. Furthermore, the significance and application of enzymatic modification of starch production used for food products, packaging, pharmaceuticals, and cosmetics are briefly discussed to highlight the enhanced characteristics of this modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adewale, P., Yancheshmeh, M. S., & Lam, E. (2022). Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydrate Polymers, 291, 119590.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, I., Xiong, Z., Hanguo, X., Khalid, N., & Khan, R. S. (2022). Formulation and characterization of yogurt prepared with enzymatically hydrolyzed potato powder and whole milk powder. Journal of Food Science and Technology, 59(3), 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  • Amaraweera, S. M., Gunathilake, C., Gunawardene, O. H., Fernando, N. M., Wanninayaka, D. B., Dassanayake, R. S., Rajapaksha, S. M., Manamperi, A., Fernando, C. A., & Kulatunga, A. K. (2021). Development of starch-based materials using current modification techniques and their applications: A review. Molecules, 26(22), 6880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai, P. (2018). Enzymatic modification of starch for surface sizing. In Biotechnology for pulp and paper processing (pp. 431–442). Springer.

    Chapter  Google Scholar 

  • Bangar, S. P., Ashogbon, A. O., Singh, A., Chaudhary, V., & Whiteside, W. S. (2022). Enzymatic modification of starch: A green approach for starch applications. Carbohydrate Polymers, 287, 119265.

    Article  Google Scholar 

  • Biswas, P., Das, M., Boral, S., Mukherjee, G., Chaudhury, K., & Banerjee, R. (2020). Enzyme mediated resistant starch production from Indian fox nut (Euryale ferox) and studies on digestibility and functional properties. Carbohydrate Polymers, 237, 116158.

    Article  CAS  PubMed  Google Scholar 

  • Boonna, S., Rolland-Sabaté, A., Lourdin, D., & Tongta, S. (2019). Macromolecular characteristics and fine structure of amylomaltase-treated cassava starch. Carbohydrate Polymers, 205, 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Bosmans, G. M., Lagrain, B., Fierens, E., & Delcour, J. A. (2013). Impact of amylases on biopolymer dynamics during storage of straight-dough wheat bread. Journal of Agricultural and Food Chemistry, 61(26), 6525–6532.

    Article  CAS  PubMed  Google Scholar 

  • Calvin, O. (2016). Starch and modified starch in bread making: A review. African Journal of Food Science, 10(12), 344–351.

    Article  Google Scholar 

  • Chen, G., & Zhang, B. (2012). Hydrolysis of granular corn starch with controlled pore size. Journal of Cereal Science, 56(2), 316–320.

    Article  CAS  Google Scholar 

  • Conde, A. G. (2017). Effects of chemical and enzymatic modifications on starch and Naringenin complexation. University of Arkansas.

    Google Scholar 

  • Das, M., Rajan, N., Biswas, P., & Banerjee, R. (2022). A novel approach for resistant starch production from green banana flour using amylopullulanase. LWT, 153, 112391.

    Article  CAS  Google Scholar 

  • Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Fallal, A., Dobara, M., El-Sayed, A., & Omar, N. (2012). Starch and microbial α-amylases: From concepts to biotechnological applications. In Carbohydrates–Comprehensive studies on glycobiology and glycotechnology (pp. 459–488). Intech.

    Google Scholar 

  • Goesaert, H., Slade, L., Levine, H., & Delcour, J. A. (2009). Amylases and bread firming–An integrated view. Journal of Cereal Science, 50(3), 345–352.

    Article  CAS  Google Scholar 

  • Gopinath, S. C., Anbu, P., Arshad, M. M., Lakshmipriya, T., Voon, C. H., Hashim, U., & Chinni, S. V. (2017). Biotechnological processes in microbial amylase production. BioMed Research International, 2017, 1272193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, L., Deng, Y., Lu, L., Zou, F., & Cui, B. (2019a). Synergistic effects of branching enzyme and transglucosidase on the modification of potato starch granules. International Journal of Biological Macromolecules, 130, 499–507.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Li, H., Lu, L., Zou, F., Tao, H., & Cui, B. (2019b). The role of sequential enzyme treatments on structural and physicochemical properties of cassava starch granules. Starch-Stärke, 71(7–8), 1800258.

    Article  Google Scholar 

  • Guo, L., Tao, H., Cui, B., & Janaswamy, S. (2019c). The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry, 277, 504–514.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Yuan, Y., Li, J., Tan, C., Janaswamy, S., Lu, L., Fang, Y., & Cui, B. (2021). Comparison of functional properties of porous starches produced with different enzyme combinations. International Journal of Biological Macromolecules, 174, 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. (2012). Pullulanase: Role in starch hydrolysis and potential industrial applications. Enzyme Research, 2012, 921362.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji, H., Li, X., Bai, Y., Shen, Y., & Jin, Z. (2021). Synergetic modification of waxy maize starch by dual-enzyme to lower the in vitro digestibility through modulating molecular structure and malto-oligosaccharide content. International Journal of Biological Macromolecules, 180, 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Kale, R., Sontakke, M., Raut, G. S., & Chavan, V. (2020). Use of enzyme modified sweet potato starch in formulation of ice cream. International Journal of Chemical Studies, 8(4), 3002–3008.

    Article  CAS  Google Scholar 

  • Korompokis, K., Deleu, L. J., De Brier, N., & Delcour, J. A. (2021). Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chemistry, 362, 130203.

    Article  CAS  PubMed  Google Scholar 

  • Lacerda, L. D., Leite, D. C., Soares, R. M., & da Silveira, N. P. (2018). Effects of α-amylase, Amyloglucosidase, and their mixture on hierarchical porosity of Rice starch. Starch-Stärke, 70(11–12), 1800008.

    Article  Google Scholar 

  • Leemhuis, H., Kelly, R. M., & Dijkhuizen, L. (2010). Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology, 85(4), 823–835.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Rashed, M. M., Deng, L., Jin, Z., & Jiao, A. (2019). Thermostable and mesophilic α-amylase: Effects on wheat starch physicochemical properties and their applications in extruded noodles. Journal of Cereal Science, 87, 248–257.

    Article  CAS  Google Scholar 

  • Li, H., Gui, Y., Li, J., Zhu, Y., Cui, B., & Guo, L. (2020). Modification of rice starch using a combination of autoclaving and triple enzyme treatment: Structural, physicochemical and digestibility properties. International Journal of Biological Macromolecules, 144, 500–508.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Fu, X., Mu, S., Fei, T., Zhao, Y., Fu, J., Lee, B.-H., Ma, Y., Zhao, J., & Hou, J. (2021). Potato starch modified by Streptococcus thermophilus GtfB enzyme has low viscoelastic and slowly digestible properties. International Journal of Biological Macromolecules, 183, 1248–1256.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Gao, W., Zhang, X., Wu, Z., Yu, B., & Cui, B. (2020). Physicochemical properties of pea starch-lauric acid complex modified by maltogenic amylase and pullulanase. Carbohydrate Polymers, 242, 116332.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Zhao, P., Chen, J., Yan, Y., & Wu, Z. (2022). Recent advances and applications in starch for intelligent active food packaging: A review. Food, 11(18), 2879.

    Article  CAS  Google Scholar 

  • Lopez-Ochoa, J. D., Cadena-Chamorro, E., Ciro-Velasquez, H., & Rodríguez-Sandoval, E. (2022). Enzymatically modified cassava starch as a stabilizer for fermented dairy beverages. Starch-Stärke, 74, 2100242.

    Article  CAS  Google Scholar 

  • Maizura, M., Fazilah, A., Norziah, M., & Karim, A. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. Journal of Food Science, 72(6), C324–C330.

    Article  CAS  PubMed  Google Scholar 

  • Miao, Z., Zhang, Y., & Lu, P. (2021). Novel active starch films incorporating tea polyphenols-loaded porous starch as food packaging materials. International Journal of Biological Macromolecules, 192, 1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • More, P. R., Solunke, R. V., Talib, M., & Parate, V. R. (2017). Stabilization of ice-cream by incorporating α-Amylase Modified Taro (Colocasia esculenta) Starch. In International conference proceeding ICGTETM, IJCRTICGT052.

    Google Scholar 

  • Mun, S., Kim, Y.-L., Kang, C.-G., Park, K.-H., Shim, J.-Y., & Kim, Y.-R. (2009). Development of reduced-fat mayonnaise using 4αGTase-modified rice starch and xanthan gum. International Journal of Biological Macromolecules, 44(5), 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Neelam, K., Vijay, S., & Lalit, S. (2012). Various techniques for the modification of starch and the applications of its derivatives. International Research Journal of Pharmacy, 3(5), 25–31.

    Google Scholar 

  • Park, K.-H., Park, J.-H., Lee, S., Yoo, S.-H., & Kim, J.-W. (2008). Enzymatic modification of starch for food industry. In Carbohydrate-active enzymes (pp. 157–183). Elsevier.

    Chapter  Google Scholar 

  • Park, S. H., Na, Y., Kim, J., Kang, S. D., & Park, K.-H. (2018). Properties and applications of starch modifying enzymes for use in the baking industry. Food Science and Biotechnology, 27(2), 299–312.

    CAS  PubMed  Google Scholar 

  • Prompiputtanapon, K., Sorndech, W., & Tongta, S. (2020). Surface modification of tapioca starch by using the chemical and enzymatic method. Starch-Stärke, 72(3–4), 1900133.

    Article  CAS  Google Scholar 

  • Purcell, S., Wang, Y. J., & Seo, H. S. (2014). Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets. Journal of Food Science, 79(5), C802–C809.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, C. K., Suriya, M., & Haripriya, S. (2013). Physico-chemical and functional properties of resistant starch prepared from red kidney beans (Phaseolus vulgaris. L) starch by enzymatic method. Carbohydrate Polymers, 95(1), 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., Li, Y., Li, C., Gu, Z., Cheng, L., Hong, Y., & Li, Z. (2017). Pasting and thermal properties of waxy corn starch modified by 1, 4-α-glucan branching enzyme. International Journal of Biological Macromolecules, 97, 679–687.

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., & Vernon-Carter, E. (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14(2), 151–159.

    Article  CAS  Google Scholar 

  • Shah, U., Naqash, F., Gani, A., & Masoodi, F. (2016). Art and science behind modified starch edible films and coatings: A review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 568–580.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A., Masoodi, F., Gani, A., & Ashwar, B. (2018). Dual enzyme modified oat starch: Structural characterisation, rheological properties, and digestibility in simulated GI tract. International Journal of Biological Macromolecules, 106, 140–147.

    Article  CAS  PubMed  Google Scholar 

  • Shang, Y., Chao, C., Yu, J., Copeland, L., Wang, S., & Wang, S. (2018). Starch spherulites prepared by a combination of enzymatic and acid hydrolysis of normal corn starch. Journal of Agricultural and Food Chemistry, 66(25), 6357–6363.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. K., Ramakanth, D., Kumar, A., Lee, Y. S., & Gaikwad, K. K. (2021). Active packaging technologies for clean label food products: A review. Journal of Food Measurement and Characterization, 15(5), 4314–4324.

    Article  Google Scholar 

  • Singh, A. K., Kim, J. Y., & Lee, Y. S. (2022). Phenolic compounds in active packaging and edible films/coatings: Natural bioactive molecules and novel packaging ingredients. Molecules, 27(21), 7513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza, P. M. d., & Magalhães, P. d. O. (2010). Application of microbial α-amylase in industry-A review. Brazilian Journal of Microbiology, 41, 850–861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Powell, A., & Oates, C. (1995). Pattern of enzyme hydrolysis in raw sago starch: Effects of processing history. Carbohydrate Polymers, 26(2), 91–97.

    Article  CAS  Google Scholar 

  • Wang, S., Wang, J., Liu, Y., & Liu, X. (2020). Starch modification and application. In Starch structure, functionality and application in foods (pp. 131–149). Springer.

    Chapter  Google Scholar 

  • Wang, T., Wang, F., Ma, R., & Tian, Y. (2022). Enzymatically modified starch for paper surface sizing: Enzymes with different action modes and sites. Carbohydrate Polymers, 291, 119636.

    Article  CAS  PubMed  Google Scholar 

  • Woo, S.-H., Kim, J.-S., Jeong, H.-M., Shin, Y.-J., Hong, J.-S., Choi, H.-D., & Shim, J.-H. (2021). Development of freeze-thaw stable starch through enzymatic modification. Food, 10(10), 2269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Suk Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Kumar, A., Gaikwad, K.K., Lee, Y.S. (2023). Enzymatic Modification of Starch. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_17

Download citation

Publish with us

Policies and ethics