Skip to main content

Deep Freezing and Thawing Modification and Its Impact on Starch Properties

  • Chapter
  • First Online:
Starch: Advances in Modifications, Technologies and Applications
  • 423 Accesses

Abstract

With the development of times and accelerated pace of life, frozen food has become an important product for family procurement because of its characteristics of easy processing and good flavor. To further enhance the texture of foods, many frozen foods, such as fruit fillings, soups, sauces, frozen batter and cream-based products, use starch as a base ingredient or additive. Freeze-thaw is a common physical modification and food processing method. In the freeze-thaw process, starchy food tissues appear with aging and retrogradation, increased hardness, improved water precipitation rate and other phenomena, resulting in product moisture loss and texture softening easily, which leads to decreased quality and reduced consumption attributes. Therefore, it is necessary to describe the changes in starch structure during freeze-thaw process and discuss the effects of the repeated freeze-thaw process on the physicochemical properties of starch. Meanwhile, the important factors affecting the freeze-thaw stability of starch-based foods are expounded, the possible action process and mechanism are explored, and the current application and research progress of starch freeze-thaw modification are summarized to provide the theoretical basis for further improvement of the quality of starch-based foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arunyanart, T., & Charoenrein, S. (2008). Effect of sucrose on the freeze–thaw stability of rice starch gels: Correlation with microstructure and freezable water. Carbohydrate Polymers, 74(3), 514–518.

    Google Scholar 

  • Carr, M. E. (2010). Preparation and application of starch graft poly(vinyl) copolymers as paper coating adhesives. Starch, 44(6), 219–223.

    Google Scholar 

  • Chang, Y. H., Lim, S. T., & Yoo, B. (2004). Dynamic rheology of corn starch–sugar composites. Journal of Food Engineering, 64(4), 521–527.

    Article  Google Scholar 

  • Charles, A. L., Cato, K., Huang, T. C., Chang, Y. H., Ciou, J. Y., Chang, J. S., & Lin, H. H. (2016). Functional properties of arrowroot starch in cassava and sweet potato composite starches. Food Hydrocolloids, 53, 187–191.

    Article  CAS  Google Scholar 

  • Charoenrein, S., & Preechathammawong, N. (2010). Undercooling associated with slow freezing and its influence on the microstructure and properties of rice starch gels. Journal of Food Engineering, 100(2), 310–314.

    Article  CAS  Google Scholar 

  • Cheetham, N., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284.

    Article  CAS  Google Scholar 

  • Chen, H. M., Fu, X., & Luo, Z. G. (2015). Effect of gum arabic on freeze-thaw stability, pasting and rheological properties of tapioca starch and its derivatives. Food Hydrocolloids, 51, 355–360.

    Article  CAS  Google Scholar 

  • Cristina, T., Farayde, F., Rita, O., & Collares, F. (2007). Freeze-thaw stability of gels prepared from starches of non-conventional sources. Starch, 59(3–4), 156–160.

    Google Scholar 

  • Dongling, Q., Fengwei, X., Binjia, Z., & Zhao. (2017). A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocolloids, 65, 24–34.

    Article  Google Scholar 

  • Eliasson, A. C., & Gudmundsson, M. (1996). Starch: Physicochemical and functional aspects. Food Science and Technology. CRC Press.

    Google Scholar 

  • Ferrero, C., Martino, M. N., & Zaritzky, N. E. (2010). Corn starch-xanthan gum interaction and its effect on the stability during storage of frozen gelatinized suspension. Starch, 46(8), 300–308.

    Article  Google Scholar 

  • Funami, T., Kataoka, Y., Omoto, T., Goto, Y., Asai, I., & Nishinari, K. (2005). Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch. Food Hydrocolloids, 19(1), 1–13.

    Article  CAS  Google Scholar 

  • Gao, J. M., Huang, Q., Guo, H. M., Luo, Q. G., & Li, W. H. (2017). Effect of freeze-thawing cycles on the physicochemical properties of corn starch gels and granules. Modern Food Science and Technology, 33(2), 181–189.

    Google Scholar 

  • Hedayati, S., Shahidi, F., Koocheki, A., Farahnaky, A., & Majzoobi, M. (2016). Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values. International Journal of Biological Macromolecules, 91, 730–735.

    Article  CAS  PubMed  Google Scholar 

  • Hongwei, W., Naiyong, X., Xintian, X., & Zhang. (2019). Effect of pregelatinized starch on the characteristics, microstructures, and quality attributes of glutinous rice flour and dumplings. Food Chemistry, 283, 248–256.

    Article  Google Scholar 

  • Hu, A. J., Zhen, J., Qin, Z. P., & Yang, F. (2010). Properties of modified starches and their applications in food industry. Cereals & Oils, 6, 1–4.

    Google Scholar 

  • Hwa, B., Ke, X. B., Ying, M. B., Yi, L. D., Hua, Z., & Ling, C. A. (2020). Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrasonics Sonochemistry, 63, 104868.

    Article  Google Scholar 

  • Jérôme, F., Lynn, D., Paul, M., & Blecker. (2014). Impact of freezing and thawing processes on wheat and potato starch gel syneresis. Starch, 66(1), 208–215.

    Google Scholar 

  • Jia, C., Huang, W., Zou, Q., Xiaohong, G., & Duarte, P. R. (2012). Influence of Thermalstable ice-structuring proteins extracted from oat flour and Chinese privet leaves on freeze-thaw stability of wheat starch gels. Food Science, 33(7), 83–87.

    CAS  Google Scholar 

  • Jia, R., Katano, T., Yoshimoto, Y., Gao, Y., Watanabe, Y., Nakazawa, N., & Okazaki, E. (2018). Sweet potato starch with low pasting temperature to improve the gelling quality of surimi gels after freezing. Food Hydrocolloids, 81, 467–473.

    Article  CAS  Google Scholar 

  • Kang, N. Y. (2021). Clean label: A synonym for healthy food. China Food Industry, 325(11), 111–1133.

    Google Scholar 

  • Klaochanpong, N., Puttanlek, C., Rungsardthong, V., Puncha-Arnon, S., & Uttapap, D. (2015). Physicochemical and structural properties of debranched waxy rice, waxy corn and waxy potato starches. Food Hydrocolloids, 45, 218–226.

    Article  CAS  Google Scholar 

  • Kumar, L., Brennan, M., Zheng, H., & Brennan, C. (2018). The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chemistry, 245, 518–524.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. H., Baek, M. H., Cha, D. S., Park, H. J., & Lim, S. T. (2002). Freeze–thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids, 16(4), 345–352.

    Article  CAS  Google Scholar 

  • Li, J. Y., & Yeh, A. I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50(3), 141–148.

    Article  Google Scholar 

  • Li, H., Ho, V. T., Turner, M. S., & Dhital, S. (2016). Encapsulation of lactobacillus plantarum in porous maize starch. LWT – Food Science and Technology, 74, 542–549.

    Article  CAS  Google Scholar 

  • Liu, J., & Liu, Y. W. (2006). Comparison on the pasting properties of the native and and pre-gel wheat. Journal of the Chinese Cereals and Oils Association, 03, 53–56.

    Google Scholar 

  • Liu, Y., Gao, J., Wu, H., Gou, M., Jing, L., Zhao, K., & Li, W. (2019). Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures. International Journal of Biological Macromolecules, 133, 346–353.

    Article  CAS  PubMed  Google Scholar 

  • Long, H., Cai, Z. J., Liu, L. S., & Liu, Q. (2007). Application properties of fern root starch: Freeze-thaw stabilization. Journal of Southwest University for Nationalities. Natural Science Edition, 33(1), 100–104.

    Google Scholar 

  • Majzoobi, M., Kaveh, Z., & Farahnaky, A. (2016). Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels. Food Chemistry, 196, 720–725.

    Article  CAS  PubMed  Google Scholar 

  • Manners, D. J. (1989). Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers, 11(2), 87–112.

    Article  CAS  Google Scholar 

  • Miao, L., Zhao, S., Zhang, B., Tan, M., Niu, M., Jia, C., & Huang, Q. (2018). Understanding the supramolecular structures and pasting features of adlay seed starches. Food Hydrocolloids, 83, 411–418.

    Article  CAS  Google Scholar 

  • Mua, J., & Jackson, D. (1997). Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural & Food Chemistry, 45(10), 3840–3847.

    Article  CAS  Google Scholar 

  • Mutungi, C., Passauer, L., Onyango, C., Jaros, D., & Rohm, H. (2012). Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydrate Polymers, 87(1), 598–606.

    Article  CAS  PubMed  Google Scholar 

  • Perezlloret, S., Bertoft, E., & Perez, R. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review: The legal and regulatory environment of business. Starch, 62(8), 389–420.

    Article  Google Scholar 

  • Qiao, D., Yu, L., Liu, H., Zou, W., Xie, F., Simon, G., Petinakis, E., Shen, Z., & Chen, L. (2016). Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents. Carbohydrate Polymers, 144, 271–281.

    Article  CAS  PubMed  Google Scholar 

  • Saiyavit, V., Sujin, S., Warunee, V., & Onanong, N. (2002). Freezing and thawing conditions affect the gel stability of different varieties of Rice flour. Starch, 54(1), 31–36.

    Article  Google Scholar 

  • Sandhu, K. S., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507.

    Article  CAS  Google Scholar 

  • Seetapan, N., Limparyoon, N., Gamonpilas, C., Methacanon, P., & Fuongfuchat, A. (2015). Effect of cryogenic freezing on textural properties and microstructure of rice flour/tapioca starch blend gel. Journal of Food Engineering, 151, 51–59.

    Article  CAS  Google Scholar 

  • Sevenou, O., Hill, S. E., Farhat, I. A., & Mitchell, J. R. (2002). Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 31(3), 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Shifeng, Y. U., Ying, M. A., & Zheng, X. (2012). Effects of low- and ultralow-temperature freezing on retrogradation and textural properties of rice starch gel during storage. Journal of Texture Studies, 43(3), 175–186.

    Article  Google Scholar 

  • Shifeng, Y., Yongchun, Z., Hongyan, L., & Gong. (2015). Effect of freeze-thawing treatment on the microstructure and thermal properties of non-waxy corn starch granule. Starch, 67(12), 989–1001.

    Google Scholar 

  • Srichuwong, S., Isono, N., Jiang, H., Mishima, T., & Hisamatsu, M. (2012). Freeze–thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydrate Polymers, 87(2), 1275–1279.

    Article  CAS  Google Scholar 

  • Su, H., Tu, J., Zheng, M., Deng, K., Miao, S., Zeng, S., & Lu, X. (2020). Effects of oligosaccharides on particle structure, pasting and thermal properties of wheat starch granules under different freezing temperatures. Food Chemistry, 315, 126209.

    Article  CAS  PubMed  Google Scholar 

  • Suna, C., & Byoungseung, Y. (2010). Comparison of the effect of sugars on the viscoelastic properties of sweet potato starch pastes. International Journal of Food Science & Technology, 45(2), 410–414.

    Article  Google Scholar 

  • Suortti, T., Gorenstein, M. V., & Roger, P. J. (1998). Determination of the molecular mass of amylose. Journal of Chromatography A, 828(2), 515–521.

    Article  CAS  Google Scholar 

  • SzymoÅ„ska, J., Krok, F., Komorowska-Czepirska, E., & Re Bilas, K. (2003). Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydrate Polymers, 52(1), 1–10.

    Article  Google Scholar 

  • Tang, X. J., Liu, L. B., Huang, J. H., & Wang, J. (2013). Physicochemical properties of wheat resistant starch by autoclave method combined with repeated freezing and melting. Modern Food Science and Technology, 3, 519–522.

    Google Scholar 

  • Tao, H. (2017). Wheat starch deterioration during frozen storage: Mechanism and effect on the quality of dough. Jiangnan university.

    Google Scholar 

  • Tao, H., Wang, P., Ali, B., Wu, F., Jin, Z., & Xu, X. (2015a). Structural and functional properties of wheat starch affected by multiple freezing/thawing cycles. Starch, 67(8), 683–691.

    Article  CAS  Google Scholar 

  • Tao, H., Yan, J., Zhao, J., Tian, Y., Jin, Z., & Xu, X. (2015b). Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy Rice starch. PLoS ONE, 10(5), 1–11.

    Article  Google Scholar 

  • Tao, H., Zhang, B., Wu, F., Jin, Z., & Xu, X. (2016). Effect of multiple freezing/thawing-modified wheat starch on dough properties and bread quality using a reconstitution system. Journal of Cereal Science, 69, 132–137.

    Article  CAS  Google Scholar 

  • Tao, H., Huang, J. S., Xie, Q. T., Zou, Y. M., Wang, H. L., Wu, X. Y., & Xu, X. M. (2018). Effect of multiple freezing-thawing cycles on structural and functional properties of starch granules isolated from soft and hard wheat. Food Chemistry, 265, 18–22.

    Article  CAS  PubMed  Google Scholar 

  • Teng, L. Y., Chin, N. L., & Yusof, Y. A. (2013). Rheological and textural studies of fresh and freeze-thawed native sago starch-sugar gels. II. Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 31(2), 156–165.

    Article  CAS  Google Scholar 

  • Varela, P., & Fiszman, S. M. J. F. H. (2011). Hydrocolloids in fried foods. A review. Food Hydrocolloids, 25(8), 1801–1812.

    Article  CAS  Google Scholar 

  • Wang, L., Xie, B., Xiong, G., Wu, W., Wang, J., Qiao, Y., & Liao, L. (2013). The effect of freeze–thaw cycles on microstructure and physicochemical properties of four starch gels. Food Hydrocolloids, 31(1), 61–67.

    Article  Google Scholar 

  • Wang, G. Q., Liu, G. D., Hong, Y., Gu, Z. B., L, C., & Li, Z. F. (2015). Influence of sodium chloride on the freeze-thaw stability of corn starch gels. Journal of Food Science and Biotechnology, 34(7), 712–716.

    CAS  Google Scholar 

  • Wang, L., Xu, J., Fan, X., Wang, Q., Wang, P., Zhang, Y., & Yu, Y. (2015). Effect of disaccharides of different composition and linkage on corn and waxy corn starch retrogradation. Food Hydrocolloids, 61, 531–536.

    Article  Google Scholar 

  • Wang, M. J., Ye, X. T., Wu, J. H., Sun, Z. W., Huang, Y. W., Zhihong, L. V., et al. (2016). Research progress on freeze-thaw stability of starch. Granule and oil. Food Science and Technology, 24(5), 19–23.

    Google Scholar 

  • Wang, H., Liu, Y., Chen, L., Li, X., Wang, J., & Xie, F. (2018). Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry, 242(1), 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Bai, X., Jiang, Y., Lang, S., & Lei, Y. (2019). Preparation and characterization of low oil absorption starch via freeze-thawing. Carbohydrate Polymers, 211, 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Ding, J., Xiao, N., Liu, X., & Zhang, H. (2020a). Insights into the hierarchical structure and digestibility of starch in heat-moisture treated adlay seeds. Food Chemistry, 318(2), 126489.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Hu, X., Wang, Z., Bao, Q., & Li, S. (2020b). Preparation and characterization of highly lipophilic modified potato starch by ultrasound and freeze-thaw treatments. Ultrasonics Sonochemistry, 64, 105054.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Xu, K., Liu, X., Zhang, Y., & Zhang, H. (2020c). Understanding the structural, pasting and digestion properties of starch isolated from frozen wheat dough. Food Hydrocolloids, 111, 106168.

    Article  Google Scholar 

  • Wang, H. W., Chen, B. Y., Xu, K., Zhang, Y. Y., Liu, X. L., & Su, D. M. (2022a). Effect of freeze-thawing treated starch on quality attributes of steamed bread. Journal of the Chinese Cereals and Oils Association, 37(07), 69–76.

    Google Scholar 

  • Wang, H., Wang, Y., Xu, K., Zhang, Y., & Zhang, H. (2022b). Causal relations among starch hierarchical structure and physicochemical characteristics after repeated freezing-thawing. Food Hydrocolloids, 122, 107121.

    Article  CAS  Google Scholar 

  • Wang, S. Y., Zhang, C., Liu, Q. Q., Wang, Z. J., Wan, K. X., Qian, J. Y., & Li, Q. (2022c). Modification of potato starch by critical melting pretreatment combined with freeze-thawing: Preparation, morphology, structure, and functionality. LWT, 158, 113109.

    Article  CAS  Google Scholar 

  • Whistler, R. L., Bemiller, J. N., & Paschall, E. F. (1967). Starch: Chemistry and technology (2nd ed.). Academic.

    Google Scholar 

  • Wu, Y. (1988). Acetylated and hydroxypropylated distarch phosphates from waxy barley: Paste properties and freeze-thaw stability. Kansas State University.

    Google Scholar 

  • Xu, K. (2021). Understanding the change mechanism of starch characteristics isolated from frozen storaged and their effect on steamed bread quality. Zhengzhou University of Light Industry.

    Google Scholar 

  • Xu, L., Chen, G., Peng, C., Qiao, H., Ke, F., Hou, R., & Wan, X. (2017). Adsorptive removal of fluoride from drinking water using porous starch loaded with common metal ions. Carbohydrate Polymers, 160, 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C. C., Liu, D. K., Zhang, L., Chen, X. J., Sui, Y. C., Zhang, H. Z., & Ma, H. (2020). Influence of temperature fluctuations on the state/phase, ice crystal morphology, cell structure, and quality of celery during frozen storage. LWT, 125, 109219.

    Article  CAS  Google Scholar 

  • Xu, K., Chi, C., She, Z., Liu, X., Zhang, Y., Wang, H., & Zhang, H. (2022). Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread. Food Chemistry, 366, 130614.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., Yang, N., Jiao, A. Q., & Xue-Ming, X. U. (2012). Effect of freezing and thawing on the properties of glutinous rice starch. Science and Technology of Food Industry, 33(24), 109–112.

    CAS  Google Scholar 

  • Ye, J., Yang, R., Liu, C., Luo, S., Chen, J., Hu, X., & Wu, J. (2018a). Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism. Food Chemistry, 268, 324–333.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J. Q., Wu, Z. Q., Li, L., Xue, S. J., & Yang, D. (2018b). Research progress on freeze-thawing characteristic and improved methods of waxy starch gel. Food Science technology, 43(01), 252–257.

    CAS  Google Scholar 

  • Yu, L., Zhao, A., Yang, M., Wang, C., Wang, M., & Bai, X. (2018). Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocolloids, 83, 465–472.

    Article  Google Scholar 

  • Yuan, R. C., & Thompson, D. B. (1998). Freeze-thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chemistry, 75(4), 571–573.

    Article  CAS  Google Scholar 

  • Zhang, P. F. (2012). A study on the structure and properties of potato starch of different varieties. South China University of Technology.

    Google Scholar 

  • Zhang, C., & Lim, S. T. (2020). Physical modification of various starches by partial gelatinization and freeze-thawing with xanthan gum. Food Hydrocolloids, 111, 106210.

    Article  Google Scholar 

  • Zhang, B., Li, X., Liu, J., Xie, F., & Chen, L. (2013). Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocolloids, 31(1), 68–73.

    Article  CAS  Google Scholar 

  • Zhang, Y. C., Yu, S. F., & Zheng, X. Q. (2014a). Effects of low temperature freeze-thawing on the structural characteristics of waxy corn starch granule. Food Science and Technology, 10, 178–183.

    Google Scholar 

  • Zhang, B., Yue, Z., Li, X., Lin, L., Xie, F., & Ling, C. (2014b). Supramolecular structural changes of waxy and high-amylose cornstarches heated in abundant water. Food Hydrocolloids, 35, 700–709.

    Article  CAS  Google Scholar 

  • Zhang, B., Chen, L., Li, X., Li, L., & Zhang, H. (2015a). Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 50, 228–236.

    Article  CAS  Google Scholar 

  • Zhang, H., Yuan, B., Zhao, Q., Li, X. K., & Liu, Y. Q. (2015b). Study on freeze-thaw stability of wheat starch gel. Food Industry, 36(03), 35–37.

    Google Scholar 

  • Zhang, C., Han, J. A., & Lim, S. T. (2017). Characteristics of some physically modified starches using mild heating and freeze-thawing. Food Hydrocolloids, 77, 894–901.

    Article  Google Scholar 

  • Zhao, A. Q. (2018). Research on preparation of porous starch by combined with the freeze-thawing and enzymatic hydrolysis. Jilin Agricultural University.

    Google Scholar 

  • Zhao, Z. K., Mu, T. H., Yang, H. Y., & Zhang, M. (2015). Effect of gelatinization and Retrogradation cycle treatments on the structure and physicochemical properties of sweet potato starch. Modern Food Science and Technology, 11, 203–210.

    Google Scholar 

  • Zhao, M. X., Bao, Y. L., & Liu, P. L. (2018). Research in progress on fine microstructure of starch granules. Food Science, 39(11), 284–294.

    Google Scholar 

  • Zhou, X. H. (2014). Effect of different salts on the gelatinization and retrogradation properties of starch. Huazhong Agricultural University.

    Google Scholar 

  • Zhou, D. (2017). Effect of different oligosaccharides on the gelatinization and retrogradation properties of sweet potato starch. Hefei University of Technology.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (U22A20549, 32172151), the Foreign Cooperation Projects of Fujian Province of China (2021I0007), the FAFU Funds for Distinguished Young Scientists (xjq201811), and the Projects for Scientific and Technological Development of Fujian Agriculture and Forestry University (CXZX2019095G, CXZX2020120A).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Ma, X., Lei, Y. (2023). Deep Freezing and Thawing Modification and Its Impact on Starch Properties. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_12

Download citation

Publish with us

Policies and ethics