Skip to main content

High Hydrostatic Pressure Treatment of Starch

  • Chapter
  • First Online:
Starch: Advances in Modifications, Technologies and Applications

Abstract

Starch is a really singular and remarkable natural biopolymer, central to human diet. To the variety of granular morphology and properties due to its different plant origins, food technological processes are able add new types and properties, generating opportunities for new products. High Hydrostatic Pressure (HHP) treatment is a trendy physical process that endows its products of a fresh and chemical-free label. This chapter focuses on corn starch HHP treatment, providing a comprehensive overview about the research development, including equipment technology, application and effects on starch, different methods of preparation and the more usual techniques for its characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aganovic, K., Hertel, C., Vogel, R. F., Johne, R., Schlüter, O., Schwarzenbolz, U., et al. (2021). Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3225–3266.

    Article  PubMed  Google Scholar 

  • Ahmed, J., & Thomas, L. (2017). Pasting properties of starch: Effect of particle size, hydrocolloids and high pressure. In Glass transition and phase transitions in food and biological materials (Vol. 427). Wiley.

    Chapter  Google Scholar 

  • Apostolidis, E., & Mandala, I. (2020). Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids, 103, 105677.

    Article  CAS  Google Scholar 

  • Bauer, B. A., & Knorr, D. (2005). The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing. Journal of Food Engineering, 68(3), 329–334.

    Article  Google Scholar 

  • Belmiro, R. H., Tribst, A. A. L., & Cristianini, M. (2020). Effects of high pressure processing on common beans (Phaseolus Vulgaris L.): cotyledon structure, starch characteristics, and phytates and tannins contents. Starch-Stärke, 72(3–4), 1900212.

    Article  CAS  Google Scholar 

  • BeMiller, J. N. (2019). Corn starch modification. In Corn (pp. 537–549). AACC International Press.

    Chapter  Google Scholar 

  • BeMiller, J. N., & Huber, K. C. (2015). Physical modification of food starch functionalities. Annual Review of Food Science and Technology, 6, 19–69.

    Article  CAS  PubMed  Google Scholar 

  • BeMiller, J. N., & Whistler, R. L. (1996). Carbohydrates. Marcel Dekker.

    Google Scholar 

  • Biliaderis, C. G., Arvanitoyannis, I., Izydorczyk, M. S., & Prokopowich, D. J. (1997). Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch-Stärke, 49(7–8), 278–283.

    Article  CAS  Google Scholar 

  • Błaszczak, W., Valverde, S., & Fornal, J. (2005). Effect of high pressure on the structure of potato starch. Carbohydrate Polymers, 59(3), 377–383.

    Article  Google Scholar 

  • Błaszczak, W., Buciński, A., & Górecki, A. R. (2015). In vitro release of theophylline from starch-based matrices prepared via high hydrostatic pressure treatment and autoclaving. Carbohydrate Polymers, 117, 25–33.

    Article  PubMed  Google Scholar 

  • Bridgman, P. W. (1964). The coagulation of albumen by pressure. In Collected Experimental Papers (Vol. II, pp. 735–736). Harvard University Press.

    Google Scholar 

  • Buckow, R., Heinz, V., & Knorr, D. (2007). High pressure phase transition kinetics of maize starch. Journal of Food Engineering, 81(2), 469–475.

    Article  Google Scholar 

  • Buckow, R., Jankowiak, L., Knorr, D., & Versteeg, C. (2009). Pressure-temperature phase diagrams of maize starches with different amylose contents. Journal of Agricultural and Food Chemistry, 57(24), 11510–11516.

    Article  CAS  PubMed  Google Scholar 

  • Cappa, C., Barbosa-Cánovas, G. V., Lucisano, M., & Mariotti, M. (2016). Effect of high pressure processing on the baking aptitude of corn starch and rice flour. LWT, 73, 20–27.

    Article  CAS  Google Scholar 

  • Castro, L. M., Alexandre, E. M., Saraiva, J. A., & Pintado, M. (2020). Impact of high pressure on starch properties: A review. Food Hydrocolloids, 106, 105877.

    Article  CAS  Google Scholar 

  • Cheetham, N. W., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284.

    Article  CAS  Google Scholar 

  • Choi, H. S., Kim, H. S., Park, C. S., Kim, B. Y., & Baik, M. Y. (2009). Ultra high pressure (UHP)-assisted acetylation of corn starch. Carbohydrate Polymers, 78(4), 862–868.

    Article  CAS  Google Scholar 

  • Conde, L. A., Kebede, B., Leong, S. Y., & Oey, I. (2022). Effect of High Hydrostatic Pressure Processing on Starch Properties of Cassava Flour. Applied Sciences, 12(19), 10043.

    Article  CAS  Google Scholar 

  • Cui, R., & Zhu, F. (2019). Physicochemical properties and bioactive compounds of different varieties of sweetpotato flour treated with high hydrostatic pressure. Food Chemistry, 299, 125129.

    Article  CAS  PubMed  Google Scholar 

  • Deladino, L., Teixeira, A. S., Navarro, A. S., Alvarez, I., Molina-García, A. D., & Martino, M. (2015). Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants. Food and Bioproducts Processing, 94, 463–472.

    Article  CAS  Google Scholar 

  • Deladino, L., Teixeira, A. S., Plou, F. J., Navarro, A. S., & Molina-García, A. D. (2017). Effect of High Hydrostatic Pressure, alkaline and combined treatments on corn starch granules metal binding: Structure, swelling behavior and thermal properties assessment. Food and Bioproducts Processing, 102, 241–249.

    Article  CAS  Google Scholar 

  • Deng, Y., Jin, Y., Luo, Y., Zhong, Y., Yue, J., Song, X., & Zhao, Y. (2014). Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules. Journal of Cereal Science, 60(2), 302–310.

    Article  CAS  Google Scholar 

  • Díaz-Calderón, P., MacNaughtan, B., Hill, S., Foster, T., Enrione, J., & Mitchell, J. (2018). Changes in gelatinisation and pasting properties of various starches (wheat, maize and waxy maize) by the addition of bacterial cellulose fibrils. Food Hydrocolloids, 80, 274–280.

    Article  Google Scholar 

  • Douzals, J. P., Perrier Cornet, J. M., Gervais, P., & Coquille, J. C. (1998). High-pressure gelatinization of wheat starch and properties of pressure-induced gels. Journal of Agricultural and Food Chemistry, 46(12), 4824–4829.

    Article  CAS  Google Scholar 

  • Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology, 31(1), 13–26.

    Article  CAS  Google Scholar 

  • Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245–252.

    Article  CAS  Google Scholar 

  • Fannon, J. E., Shull, J. M., & BeMILLER, J. N. (1993). Interior channels of starch granules. Cereal Chemistry, 70, 611–611.

    Google Scholar 

  • Fernández, P. P., Sanz, P. D., Martino, M. N., & García, A. M. (2008). Partially-gelatinised starches by high hydrostatic pressure as oligoelement carriers. Spanish Journal of Agricultural Research, 1, 129–137.

    Article  Google Scholar 

  • Guo, Z., Zeng, S., Zhang, Y., Lu, X., Tian, Y., & Zheng, B. (2015). The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocolloids, 44, 285–291.

    Article  CAS  Google Scholar 

  • Heremans, K., & Smeller, L. (1998). Protein structure and dynamics at high pressure. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1386(2), 353–370.

    Article  CAS  PubMed  Google Scholar 

  • Heydari, A., Razavi, S. M. A., Hesarinejad, M. A., & Farahnaky, A. (2021). New insights into physical, morphological, thermal, and pasting properties of HHP-treated starches: Effect of starch type and industry-scale concentration. Starch-Stärke, 73(7–8), 2000179.

    Article  CAS  Google Scholar 

  • Hibi, Y. O. S. H. I. K. O., Matsumoto, T. A. D. A. S. H. I., & Hagiwara, S. H. I. G. E. K. O. (1993). Effect of high pressure on the crystalline structure of various starch granules. Cereal Chemistry, 70, 671–671.

    CAS  Google Scholar 

  • Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International, 43(2), 399–413.

    Article  CAS  Google Scholar 

  • Huang, H. W., Hsu, C. P., & Wang, C. Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Irani, M., Abdel-Aal, E. S. M., Razavi, S. M., Hucl, P., & Patterson, C. A. (2017). Thermal and functional properties of hairless canary seed (Phalaris canariensis L.) starch in comparison with wheat starch. Cereal Chemistry, 94(2), 341–348.

    Article  CAS  Google Scholar 

  • Jiang, Q., Gao, W., Li, X., & Zhang, J. (2011). Characteristics of native and enzymatically hydrolyzed Zea mays L., Fritillaria ussuriensis Maxim. and Dioscorea opposita Thunb. starches. Food Hydrocolloids, 25(3), 521–528.

    Article  CAS  Google Scholar 

  • Katopo, H., Song, Y., & Jane, J. L. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydrate Polymers, 47(3), 233–244.

    Article  CAS  Google Scholar 

  • Kawai, K., Fukami, K., & Yamamoto, K. (2007a). Effects of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydrate Polymers, 69(3), 590–596.

    Article  CAS  Google Scholar 

  • Kawai, K., Fukami, K., & Yamamoto, K. (2007b). State diagram of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydrate Polymers, 67(4), 530–535.

    Article  CAS  Google Scholar 

  • Khan, B., Bilal Khan Niazi, M., Samin, G., & Jahan, Z. (2017). Thermoplastic starch: A possible biodegradable food packaging material—A review. Journal of Food Process Engineering, 40(3), e12447.

    Article  Google Scholar 

  • Kim, H. S., Kim, B. Y., & Baik, M. Y. (2012). Application of ultra high pressure (UHP) in starch chemistry. Critical Reviews in Food Science and Nutrition, 52(2), 123–141.

    Article  CAS  PubMed  Google Scholar 

  • Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912–3918.

    Article  CAS  PubMed  Google Scholar 

  • Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764(3), 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Kumoro, A. C., Retnowati, D. S., & Budiyati, C. S. (2012). Water solubility, swelling and gelatinization properties of raw and ginger oil modified gadung (Dioscorea hispida Dennst) flour. Research Journal of Applied Sciences, Engineering and Technology, 4(1), 2854–2860.

    Google Scholar 

  • Larrea-Wachtendorff, D., Di Nobile, G., & Ferrari, G. (2020). Effects of processing conditions and glycerol concentration on rheological and texture properties of starch-based hydrogels produced by high pressure processing (HPP). International Journal of Biological Macromolecules, 159, 590–597.

    Article  CAS  PubMed  Google Scholar 

  • Larrea-Wachtendorff, D., Sousa, I., & Ferrari, G. (2021). Starch-Based Hydrogels Produced by High-Pressure Processing (HPP): Effect of the Starch Source and Processing Time. Food Engineering Reviews, 13(3), 622–633.

    Article  CAS  Google Scholar 

  • Le Bail, P., Bizot, H., Ollivon, M., Keller, G., Bourgaux, C., & Buleon, A. (1999). Monitoring the crystallization of amylose–lipid complexes during maize starch melting by synchrotron x-ray diffraction. Biopolymers: Original Research on Biomolecules, 50(1), 99–110.

    Article  Google Scholar 

  • Leite, T. S., de Jesus, A. L. T., Schmiele, M., Tribst, A. A., & Cristianini, M. (2017). High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT-Food Science and Technology, 76, 361–369.

    Article  CAS  Google Scholar 

  • Lemos, P. V. F., Barbosa, L. S., Ramos, I. G., Coelho, R. E., & Druzian, J. I. (2018). The important role of crystallinity and amylose ratio in thermal stability of starches. Journal of Thermal Analysis and Calorimetry, 131(3), 2555–2567.

    Article  CAS  Google Scholar 

  • Li, G., & Zhu, F. (2018). Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chemistry, 241, 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Zhang, F., Liu, P., Bai, Y., Gao, L., & Shen, Q. (2011). Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. Journal of Food Engineering, 103(4), 388–393.

    Google Scholar 

  • Li, W., Bai, Y., Mousaa, S. A., Zhang, Q., & Shen, Q. (2012). Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch. Food and Bioprocess Technology, 5(6), 2233–2241.

    Article  CAS  Google Scholar 

  • Li, W., Tian, X., Wang, P., Saleh, A. S., Luo, Q., Zheng, J., Ouyang, S., & Zhang, G. (2016). Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch. International Journal of Biological Macromolecules, 83, 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Wang, L., Cao, R., Fan, H., & Wang, M. (2016). In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydrate Polymers, 144, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Fu, Y., Zhang, F., Zhao, Q., Xue, Y., Hu, J., & Shen, Q. (2022). Comparison of the molecular structure of heat and pressure-treated corn starch based on experimental data and molecular dynamics simulation. Food Hydrocolloids, 125, 107371.

    Article  CAS  Google Scholar 

  • Lund, D. (1984). Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization. CRC Critical Reviews in Food Science and Nutrition, 20, 249–273.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Z., Hu, X., & Boye, J. I. (2018). Research advances on the formation mechanism of resistant starch type III: A review. Critical Reviews in Food Science and Nutrition, 60(2), 276–297.

    Article  PubMed  Google Scholar 

  • Marcos, B., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiology, 25(1), 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Molina-García, A. D. (2002). The effect of hydrostatic pressure on biological systems. Biotechnology and Genetic Engineering Reviews, 19(1), 3–54.

    Article  PubMed  Google Scholar 

  • Muhr, A. H., Wetton, R. E., & Blanshard, J. M. V. (1982). Effect of hydrostatic pressure on starch gelatinisation, as determined by DTA. Carbohydrate Polymers, 2(2), 91–102.

    Article  CAS  Google Scholar 

  • Oh, H. E., Pinder, D. N., Hemar, Y., Anema, S. G., & Wong, M. (2008). Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocolloids, 22(1), 150–155.

    Article  CAS  Google Scholar 

  • Okur, I., Ozel, B., Oztop, M. H., & Alpas, H. (2019). Effect of high hydrostatic pressure in physicochemical properties and in vitro digestibility of cornstarch by nuclear magnetic resonance relaxometry. Journal of Food Process Engineering, 42(6), e13168.

    Article  Google Scholar 

  • Otero, L., Molina-García, A. D., & Sanz, P. D. (2000). Thermal effect in foods during quasi-adiabatic pressure treatments. Innovative Food Science & Emerging Technologies, 1(2), 119–126.

    Article  Google Scholar 

  • Ozel, B., Dag, D., Kilercioglu, M., Sumnu, S. G., & Oztop, M. H. (2017). NMR relaxometry as a tool to understand the effect of microwave heating on starch-water interactions and gelatinization behavior. LWT-Food Science and Technology, 83, 10–17.

    Article  CAS  Google Scholar 

  • Papathanasiou, M. M., Reineke, K., Gogou, E., Taoukis, P. S., & Knorr, D. (2015). Impact of high pressure treatment on the available glucose content of various starch types: a case study on wheat, tapioca, potato, corn, waxy corn and resistant starch (RS3). Innovative Food Science & Emerging Technologies, 30, 24–30.

    Article  CAS  Google Scholar 

  • Pei-Ling, L., Xiao-Song, H., & Qun, S. (2010). Effect of high hydrostatic pressure on starches: A review. Starch-Stärke, 62(12), 615–628.

    Article  Google Scholar 

  • Raghunathan, R., Pandiselvam, R., Kothakota, A., & Khaneghah, A. M. (2021). The application of emerging non-thermal technologies for the modification of cereal starches. LWT, 138, 110795.

    Article  CAS  Google Scholar 

  • Rahman, M. H., Mu, T. H., Zhang, M., Ma, M. M., & Sun, H. N. (2020). Comparative study of the effects of high hydrostatic pressure on physicochemical, thermal, and structural properties of maize, potato, and sweet potato starches. Journal of Food Processing and Preservation, 44(11), e14852.

    Article  CAS  Google Scholar 

  • Rubens, P., Snauwaert, J., Heremans, K., & Stute, R. (1999). In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydrate Polymers, 39(3), 231–235.

    Article  CAS  Google Scholar 

  • Shamai, H. K., Bianco-Peled, H., & Simoni, E. (2003). Polymorphism of resistant starch type III. Carbohydrate Polymers, 54, 363–369.

    Article  CAS  Google Scholar 

  • Shen, X., Shang, W., Strappe, P., Chen, L., Li, X., Zhou, Z., & Blanchard, C. (2018). Manipulation of the internal structure of high amylose maize starch by high pressure treatment and its diverse influence on digestion. Food Hydrocolloids, 77, 40–48.

    Article  CAS  Google Scholar 

  • Shi, L., Fu, X., Tan, C. P., Huang, Q., & Zhang, B. (2017). Encapsulation of ethylene gas into granular cold-water-soluble starch: Structure and release kinetics. Journal of Agricultural and Food Chemistry, 65(10), 2189–2197.

    Article  CAS  PubMed  Google Scholar 

  • Stolt, M., Stoforos, N. G., Taoukis, P. S., & Autio, K. (1999). Evaluation and modelling of rheological properties of high pressure treated waxy maize starch dispersions. Journal of Food Engineering, 40(4), 293–298.

    Google Scholar 

  • Stolt, M., Oinonen, S., & Autio, K. (2000). Effect of high pressure on the physical properties of barley starch. Innovative Food Science & Emerging Technologies, 1(3), 167–175.

    Article  CAS  Google Scholar 

  • Stute, R., Klingler, R. W., Boguslawski, S., Eshtiaghi, M. N., & Knorr, D. (1996). Effects of high pressures treatment on starches. Starch-Stärke, 48(11–12), 399–408.

    Article  CAS  Google Scholar 

  • Tauscher, B. (1995). Pasteurization of food by hydrostatic high pressure: Chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 200(1), 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, A. S., Navarro, A. S., Molina-García, A. D., Martino, M., & Deladino, L. (2015). Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants: Effect of mineral addition. Food and Bioproducts Processing, 94, 39–49.

    Article  CAS  Google Scholar 

  • Teixeira, A. S., Deladino, L., Garcia, M. A., Zaritzky, N. E., Sanz, P. D., & Molina-García, A. D. (2018). Microstructure analysis of high pressure induced gelatinization of maize starch in the presence of hydrocolloids. Food and Bioproducts Processing, 112, 119–130.

    Google Scholar 

  • Tester, R. F., & Sommerville, M. D. (2003). The effects of non-starch polysaccharides on the extent of gelatinisation, swelling and α-amylase hydrolysis of maize and wheat starches. Food Hydrocolloids, 17(1), 41–54.

    Article  CAS  Google Scholar 

  • van de Velde, F., van Riel, J., & Tromp, R. H. (2002). Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). Journal of the Science of Food and Agriculture, 82(13), 1528–1536.

    Article  Google Scholar 

  • Waigh, T. A., Hopkinson, I., Donald, A. M., Butler, M. F., Heidelbach, F., & Riekel, C. (1997). Analysis of the native structure of starch granules with X-ray microfocus diffraction. Macromolecules, 30(13), 3813–3820.

    Article  CAS  Google Scholar 

  • Wang, B., Li, D., Wang, L. J., Chiu, Y. L., Chen, X. D., & Mao, Z. H. (2008). Effect of high-pressure homogenization on the structure and thermal properties of maize starch. Journal of Food Engineering, 87(3), 436–444.

    Article  CAS  Google Scholar 

  • Wang, S., Li, C., Yu, J., Copeland, L., & Wang, S. (2014). Phase transition and swelling behaviour of different starch granules over a wide range of water content. LWT-Food Science and Technology, 59(2), 597–604.

    Article  CAS  Google Scholar 

  • Wang, S., Zhang, X., Wang, S., & Copeland, L. (2016). Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Scientific Reports, 6(1), 1–9.

    Google Scholar 

  • Yang, Z., Gu, Q., & Hemar, Y. (2013). In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction. Carbohydrate Polymers, 97(1), 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Swedlund, P., Hemar, Y., Mo, G., Wei, Y., Li, Z., & Wu, Z. (2016). Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. International Journal of Biological Macromolecules, 85, 604–614.

    Article  CAS  PubMed  Google Scholar 

  • Zobel, H. F., Young, S. N., & Rocca, L. A. (1988). Starch gelatinization: An X-ray diffraction study. Cereal Chemistry, 65(6), 443–446.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deladino, L., Schneider-Teixeira, A., Molina-García, A.D. (2023). High Hydrostatic Pressure Treatment of Starch. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_10

Download citation

Publish with us

Policies and ethics