Abstract
Bioreactors have been widely used in various fields of biological production for many years. Their ability to provide a tightly controlled environment during the process and to allow for monitoring and intervention to the process parameters make them quite favorable to use in biological production lines. Also, bioreactors are widely employed in tissue engineering applications. Ideally, a tissue engineering bioreactor should have the capability to effectively regulate various environmental factors, such as pH, oxygen levels, temperature, nutrient transportation and waste elimination. Additionally, it should facilitate sterile operations, such as sampling and feeding, as well as automated procedures. The general approach for these applications include immobilization of suitable cells within porous, biodegradable and biocompatible scaffolds. These scaffolds serve as frameworks for tissue formation and the cell/scaffold constructs are cultured within a bioreactor, which creates a dynamic in vitro setting conducive to tissue growth. As the technology for these systems and required conditions continue to become more complex, these bioreactor designs will also evolve with time to help treat patients with diseases related to tissue damage. There are specific designs for various kinds of bioreactors (spinner flasks, rotating wall vessel bioreactors, perfusion systems, pulsatile systems, strain systems, hollow fiber systems, wave bioreactors, microfluidic bioreactors, compression and hydrostatic systems) in the market which allows better outcomes for certain applications such as cardiovascular tissue engineering, bladder tissue engineering, neural tissue engineering, cornea tissue engineering, kidney tissue engineering, musculoskeletal tissue engineering, lung tissue engineering and gastrointestinal tissue engineering. All of these different systems and their special applications for tissue engineering studies are explained in this chapter with their specific advantages and disadvantages which make them favorable with the physicochemical environment they provide. When current developments are examined and evaluated, it is seen that bioreactors will have enhanced designs that will help them better mimic the physiological pathways of cells, tissues and their interaction with the surroundings to have better solutions for whole organ, bone, and regenerative tissue engineering applications in the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abousleiman RI, Sikavitsas VI (2006) Bioreactors for tissues of the musculoskeletal system. Adv Exp Med Biol 585:243–259. https://doi.org/10.1007/978-0-387-34133-0_17/COVER
Ahmed S, Bui MPN, Abbas A (2016) Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron 77:249–263. https://doi.org/10.1016/J.BIOS.2015.09.038
Almeida GHD, Iglesia RP, Araujo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA (2022) Uterine tissue engineering: where we stand and the challenges ahead. Tissue Eng Part B Rev 28(4):861–890. https://doi.org/10.1089/TEN.TEB.2021.0062
Amrollahi P, Tayebi L (2016) Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biotechnol 91(4):847–856. https://doi.org/10.1002/JCTB.4825
An Y, Li D (2014) Engineering skeletal muscle tissue in bioreactor systems. Chin Med J 127(23):4130–4139. https://doi.org/10.3760/CMA.J.ISSN.0366-6999.20141076
Ashammakhi N, Nasiri R, Barros NR de, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG, Khademhosseni A (2020) Gut-on-a-chip: current progress and future opportunities. Biomaterials 255. https://doi.org/10.1016/J.BIOMATERIALS.2020.120196
Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng 31(9):1017–1030. https://doi.org/10.1114/1.1603260
Bayir E, Sahinler M, Celtikoglu MM, Sendemir A, Sendemir A (2020) Bioreactors in tissue engineering: mimicking the microenvironment. Biomater Organ Tissue Regenerat New Technol Future Prosp 709–752. https://doi.org/10.1016/B978-0-08-102906-0.00018-0
Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE (2015) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nature Methods 13(2):151–157. https://doi.org/10.1038/nmeth.3697
Bernaerts K, Servaes RD, Kooyman S, Versyck KJ, Van Impe JF (2002) Optimal temperature input design for estimation of the square root model parameters: parameter accuracy and model validity restrictions. Int J Food Microbiol 73(2–3):145–157
Beşkardeş IG, Demirtaş TT, Durukan MD, Gümüşderelioğlu M (2015) Microwave-assisted fabrication of chitosan–hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med 9(11):1233–1246. https://doi.org/10.1002/TERM.1677
Bilodeau K (2004) Conception et validation d'un bioréacteur spécifique à la régénération du tissu artériel sous contraintes mécaniques.(unpublished master's thesis.) à la Faculté des études supérieures de l'Université Laval
Bilodeau K, Couet F, Boccafoschi F, Mantovani D (2005) Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. Artif Organs 29(11):906–912. https://doi.org/10.1111/J.1525-1594.2005.00154.X
Blose KJ, Krawiec JT, Weinbaum JS, Vorp DA (2014) Bioreactors for tissue engineering purposes. Regenerat Med Appl Organ Transplant 177–185. https://doi.org/10.1016/B978-0-12-398523-1.00013-6
Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25(1):1–21. https://doi.org/10.1186/S12929-018-0491-8
Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33(1):3–14. https://doi.org/10.1016/S0021-9290(99)00177-3
Bruijns B, van Asten A, Tiggelaar R, Gardeniers H (2016) Microfluidic devices for forensic DNA analysis: a review. Biosensors 6(3). https://doi.org/10.3390/BIOS6030041
Burk J, Plenge A, Brehm W, Heller S, Pfeiffer B, Kasper C (2016) Induction of tenogenic differentiation mediated by extracellular tendon matrix and short-term cyclic stretching. Stem Cells Int. https://doi.org/10.1155/2016/7342379
Carpentier B, Layrolle P, Legallais C (2011) Bioreactors for bone tissue engineering. Int J Art Organs 34(3):259–270. https://doi.org/10.5301/IJAO.2011.6333
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros-Mendez S (2020) Physically active bioreactors for tissue engineering applications. Adv Biosyst 4(10). https://doi.org/10.1002/ADBI.202000125
Catapano G, Czermak P, Eibl R, Eibl D, Pörtner R (2009) Bioreactor design and scale-up, pp 173–259. https://doi.org/10.1007/978-3-540-68182-3_5
Cei D, Costa J, Gori G, Frediani G, Domenici C, Carpi F, Ahluwalia A (2016) A bioreactor with an electro-responsive elastomeric membrane for mimicking intestinal peristalsis. Bioinspir Biomim 12(1):016001. https://doi.org/10.1088/1748-3190/12/1/016001
Chen HC, Hu YC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28(18):1415–1423. https://doi.org/10.1007/S10529-006-9111-X
Chen J, Ding J, Wu Y, Zhang S, Zheng N, Yang J, Xu J (2021) Chromium oxide nanoparticle impaired osteogenesis and cellular response to mechanical stimulus. Int J Nanomed 16:6157–6170. https://doi.org/10.2147/IJN.S317430
Chen J, Yuan Z, Liu Y, Zheng R, Dai Y, Tao R, Xia H, Liu H, Zhang Z, Zhang W, Liu W, Cao Y, Zhou G (2017) Improvement of in vitro three-dimensional cartilage regeneration by a novel hydrostatic pressure bioreactor. Stem Cells Transl Med 6(3):982–991. https://doi.org/10.5966/SCTM.2016-0118
Chen L, Wei TQ, Wang Y, Zhang J, Li H, Wang KJ (2012) Simulated bladder pressure stimulates human bladder smooth muscle cell proliferation via the PI3K/SGK1 signaling pathway. J Urol 188(2):661–667. https://doi.org/10.1016/J.JURO.2012.03.112
Cho S, Islas-Robles A, Nicolini AM, Monks TJ, Yoon JY (2016) In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron 86:697–705. https://doi.org/10.1016/J.BIOS.2016.07.015
Cimetta E, Figallo E, Cannizzaro C, Elvassore N, Vunjak-Novakovic G (2009) Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods (San Diego, Calif.) 47(2):81–89
Collier CA, Mendiondo C, Raghavan S (2022) Tissue engineering of the gastrointestinal tract: the historic path to translation. J Biol Eng 16(1):1–12. https://doi.org/10.1186/S13036-022-00289-6
Dai Y, Chen J, Li H, Li S, Chen J, Ding Y, Wu J, Wang C, Tan M (2012) Characterizing the effects of VPA, VC and RCCS on Rabbit Keratocytes onto Decellularized Bovine Cornea. PLoS ONE 7(11):e50114. https://doi.org/10.1371/JOURNAL.PONE.0050114
Darling EM, Athanasiou KA (2003) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9(1):9–26. https://doi.org/10.1089/107632703762687492
Davis NF, Callanan A (2016) Development of a bladder bioreactor for tissue engineering in urology. Methods Mol Biol 1502:213–221. https://doi.org/10.1007/7651_2015_309
de Lucena-Thomas JP, Boonprasirt P, Luetchford K, De Bank P, Ellis M (2020) Bed expansion properties of tissue engineering particles in a fluidized bed bioreactor. Biochem Eng J 160:107632
Deng D, Liu W, Xu F, Yang Y, Zhou G, Zhang WJ, Cui L, Cao Y (2009) Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials 30(35):6724–6730. https://doi.org/10.1016/J.BIOMATERIALS.2009.08.054
Dermenoudis S, Missirlis Y (2010) Design of a novel rotating wall bioreactor for the in vitro simulation of the mechanical environment of the endothelial function. J Biomech 43(7):1426–1431. https://doi.org/10.1016/J.JBIOMECH.2010.01.012
Detamore MS, Athanasiou KA (2005) Use of a rotating bioreactor toward tissue engineering the temporomandibular joint disc. Tissue Eng 11(7–8):1188–1197. https://doi.org/10.1089/TEN.2005.11.1188
DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, Morgan NY, Pohida T, Swaroop A (2018) Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep 10(1):300–313. https://doi.org/10.1016/J.STEMCR.2017.11.001
Donato D, De Napoli IE, Catapano G (2014) Model-based optimization of scaffold geometry and operating conditions of radial flow packed-bed bioreactors for therapeutic applications. Processes 2(1):34–57. https://doi.org/10.3390/PR2010034
Dutt K, Harris-Hooker S, Ellerson D, Layne D, Kumar R, Hunt R (2003) Generation of 3D retina-like structures from a human retinal cell line in a NASA bioreactor. Cell Transplant 12(7):717–731. https://doi.org/10.3727/000000003108747334
Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87. https://doi.org/10.1007/10_2008_15
El Haj AJ, Cartmell SH (2010) Bioreactors for bone tissue engineering. Proc Inst Mech Eng Part H J Eng Med 224(12):1523–1532. https://doi.org/10.1243/09544119JEIM802
Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482. https://doi.org/10.1114/1.1376696
Elomaa L, Yang YP (2017) Additive manufacturing of vascular grafts and vascularized tissue constructs. Tissue Eng Part B Rev 23(5):436–450. https://doi.org/10.1089/TEN.TEB.2016.0348
Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32(5):245–253. https://doi.org/10.1016/J.TIBTECH.2014.03.004
Farré R, Otero J, Almendros I, Navajas D (2018) Bioengineered lungs: a challenge and an opportunity. Archivos de Bronconeumología (English Edition) 54(1):31–38. https://doi.org/10.1016/J.ARBR.2017.09.010
Fernández-Pérez J, Ahearne M (2020) Decellularization and recellularization of cornea: progress towards a donor alternative. Methods 171:86–96. https://doi.org/10.1016/J.YMETH.2019.05.009
Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12:3285–3305
Gelinsky M, Bernhardt A, Milan F (2015) Bioreactors in tissue engineering: advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 15(7):670–677. https://doi.org/10.1002/ELSC.201400216
Ghosh S, Srivastava N, Jha S, Jana Kumar N (2022) Spinner Flask Bioreactor in Tissue Engineering. YMER Digital 21(06):611–626. https://doi.org/10.37896/YMER21.06/61
Goodhart JM, Cooper JO, Smith RA, Williams JL, Haggard WO, Bumgardner JD (2014) Design and validation of a cyclic strain bioreactor to condition spatially-selective scaffolds in dual strain regimes. Processes 2(2):345–360. https://doi.org/10.3390/PR2020345
Griffiths B, Noe W (1998) Scale-up of animal cell, pp 1–2
Groeber F, Kahlig A, Loff S, Walles H, Hansmann J (2013) A bioreactor system for interfacial culture and physiological perfusion of vascularized tissue equivalents. Biotechnol J 8(3):308–316. https://doi.org/10.1002/biot.201200160
Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173
Guindolet D, Crouzet E, He Z, Herbepin P, Perrache C, Garcin T, Gauthier AS, Forest F, Peoc’h M, Gain P, Gabison E, Thuret G (2021) Epithelial regeneration in human corneas preserved in an active storage machine. Translat Vis Sci Technol 10(2):31–31. https://doi.org/10.1167/TVST.10.2.31
Günal G, Zihna G, Akel H, Okan M, Karaaslan C, Aydin HM (2022) Synthesis of hybrid myocardium constructs and in vitro characterization under mechanical stimulation. Mater Today Commun 33:104477. https://doi.org/10.1016/J.MTCOMM.2022.104477
Halberstadt CR, Hardin R, Bezverkov K, Snyder D, Allen L, Landeen L (1994) Biotechnol Bioeng 43:740
Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) GMP production and testing of Xcellerated T Cells for the treatment of patients with CLL. Cytotherapy 6(6):554–562. https://doi.org/10.1080/14653240410005348
Hansmann J, Groeber F, Kahlig A, Kleinhans C, Walles H (2013) Bioreactors in tissue engineering—principles, applications and commercial constraints. Biotechnol J 8(3):298–307
Hao S, Ha L, Cheng G, Wan Y, Xia Y, Sosnoski DM, Mastro AM, Zheng SY (2018) A spontaneous 3D bone-on-a-chip for bone metastasis study of breast cancer cells. Small (Weinheim an Der Bergstrasse, Germany) 14(12). https://doi.org/10.1002/SMLL.201702787
Helmedag MJ, Weinandy S, Marquardt Y, Baron JM, Pallua N, Suschek CV, Jockenhoevel S (2015) The effects of constant flow bioreactor cultivation and keratinocyte seeding densities on prevascularized organotypic skin grafts based on a fibrin scaffold. Tissue Eng Part A 21(1–2):343. https://doi.org/10.1089/TEN.TEA.2013.0640
Henstock JR, Rotherham M, Rose JB, El Haj AJ (2013) Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro. Bone 53(2):468–477. https://doi.org/10.1016/J.BONE.2013.01.010
Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE (2000) New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6(1):75–79. https://doi.org/10.1089/107632700320919
Huang CC, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323. https://doi.org/10.1634/STEMCELLS.22-3-313
Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Undefined 9(12):1740–1748. https://doi.org/10.1039/B818401A
Huang JH, Harris JF, Nath P, Iyer R (2016) Hollow fiber integrated microfluidic platforms for in vitro co-culture of multiple cell types. Biomed Microdev 18(5). https://doi.org/10.1007/S10544-016-0102-Y
Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. https://doi.org/10.1016/J.TCB.2011.09.005
Hundt B, Best C, Schlawin N, Kaßner H, Genzel Y, Reichl U (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave® bioreactor microcarrier culture in 1–10 L scale. Vaccine 25(20):3987–3995. https://doi.org/10.1016/J.VACCINE.2007.02.061
Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42. https://doi.org/10.1039/B907515A
Jasuja H, Kar S, Katti DR, Katti KS (2021) Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed. Biofabrication 13(3). https://doi.org/10.1088/1758-5090/abd9d6
Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ (2005) Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26(12):1405–1411. https://doi.org/10.1016/J.BIOMATERIALS.2004.04.036
Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95(7):3470–3478. https://doi.org/10.1529/BIOPHYSJ.107.128611
Karamichos D (2015) Ocular tissue engineering: current and future directions. J Func Biomater 6(1):77–80. https://doi.org/10.3390/JFB6010077
Kim JH, Atala A, Yoo JJ (2020) Tissue engineering of the kidney. Principles Tissue Eng 825–843. https://doi.org/10.1016/B978-0-12-818422-6.00047-2
Kim JJ, Ellett F, Thomas CN, Jalali F, Anderson RR, Irimia D, Raff AB (2019) A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip 19(18):3094–3103. https://doi.org/10.1039/C9LC00399A
Kim SS, Penkala R, Abrahimi P (2007) A perfusion bioreactor for intestinal tissue engineering. J Surg Res 142(2):327–331. https://doi.org/10.1016/J.JSS.2007.03.039
Kim S, Kim W, Lim S, Jeon JS (2017) Vasculature-on-a-chip for in vitro disease models. Bioengineering (Basel, Switzerland) 4(1). https://doi.org/10.3390/BIOENGINEERING4010008
Ko IK, Atala A, Yoo JJ (2018) Bioreactors for regenerative medicine in urology. In: Clinical regenerative medicine in urology. Singapore, Springer Singapore, pp 87–104. https://doi.org/10.1007/978-981-10-2723-9_4
Kopp MRG, Arosio P (2018) Microfluidic approaches for the characterization of therapeutic proteins. J Pharm Sci 107(5):1228–1236. https://doi.org/10.1016/J.XPHS.2018.01.001
Korossis S, Bolland F, Kearney JN, Fisher J (2005) Bioreactors in tissue engineering. Top Tissue Eng 2:1–23
Kumar Mahto S, Tenenbaum-Katan J, Sznitman J (2012) Respiratory physiology on a chip. Scientifica 2012:1–12. https://doi.org/10.6064/2012/364054
Kumar A, Starly B (2015) Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication 7(4). https://doi.org/10.1088/1758-5090/7/4/044103
Latifi N, Heris HK, Thomson SL, Taher R, Kazemirad S, Sheibani S, Li-Jessen NYK, Vali H, Mongeau L (2016) A flow perfusion bioreactor system for vocal fold tissue engineering applications. Tissue Eng Part C Methods 22(9):823–838. https://doi.org/10.1089/TEN.TEC.2016.0053
Lee CF, Haase C, Deguchi S, Kaunas R (2010) Cyclic stretch-induced stress fiber dynamics—dependence on strain rate, Rho-kinase and MLCK. Biochem Biophys Res Commun 401(3):344–349. https://doi.org/10.1016/J.BBRC.2010.09.046
Lee CY, Chang CL, Wang YN, Fu LM (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263. https://doi.org/10.3390/IJMS12053263
Lee DY, Ahn HT, Cho KH (2000) A new skin equivalent model: dermal substrate that combines de-epidermized dermis with fibroblast-populated collagen matrix. J Dermatol Sci 23(2):132–137. https://doi.org/10.1016/S0923-1811(00)00068-2
Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A (2006) In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27(23):4221–4229. https://doi.org/10.1016/J.BIOMATERIALS.2006.03.047
Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ (2022) Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-Design Manuf 5(1):43–63
Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA (2017) Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17(11):1856–1883. https://doi.org/10.1039/C7LC00242D
Liu L, Wu W, Tuo X, Geng W, Zhao J, Wei J, Yan X, Yang W, Li L, Chen F (2010) Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold. Artif Organs 34(5):426–433. https://doi.org/10.1111/J.1525-1594.2009.00884.X
Luo DY, Wazir R, Du C, Tian Y, Yue X, Wei TQ, Wang KJ (2015) Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch. World J Urol 33(11):1881–1887. https://doi.org/10.1007/S00345-015-1509-4
Maghsoudlou P, Sood G, Akhondi H (2022) Cornea transplantation
Mahdinia E, Cekmecelioglu D, Demirci A (2019) Bioreactor scale-up, pp 213–236. https://doi.org/10.1007/978-3-030-16230-6_7
Mandenius CF (2016) Challenges for bioreactor design and operation. Bioreactors 1–34. https://doi.org/10.1002/9783527683369.ch1
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR (2022) 3D tissue-engineered vascular drug screening platforms: promise and considerations. Front Cardiov Med 9:355. https://doi.org/10.3389/FCVM.2022.847554/BIBTEX
Marrero D, Pujol-Vila F, Vera D, Gabriel G, Illa X, Elizalde-Torrent A, Alvarez M, Villa R (2021) Gut-on-a-chip: mimicking and monitoring the human intestine. Biosens Bioelectron 181:113156. https://doi.org/10.1016/J.BIOS.2021.113156
Marsh D (2017) Engineering characterisation of a rocked bag bioreactor for improved process development and scale-up. University College London
Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86. https://doi.org/10.1016/J.TIBTECH.2003.12.001
Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26(35):7481–7503. https://doi.org/10.1016/J.BIOMATERIALS.2005.05.057
Masoumi N, Howell MC, Johnson KL, Niesslein MJ, Gerber G, Engelmayr GC (2014) Design and testing of a cyclic stretch and flexure bioreactor for evaluating engineered heart valve tissues based on poly(glycerol sebacate) scaffolds. Proc Inst Mech Eng Part H J Eng Med 228(6):576–586. https://doi.org/10.1177/0954411914534837
Matsuura K, Wada M, Konishi K, Sato M, Iwamoto U, Sato Y, Tachibana A, Kikuchi T, Iwamiya T, Shimizu T, Yamashita JK, Yamato M, Hagiwara N, Okano T (2012) Fabrication of mouse embryonic stem cell-derived layered cardiac cell sheets using a bioreactor culture system. PLoS ONE 7(12):e52176. https://doi.org/10.1371/JOURNAL.PONE.0052176
Mauck RL, Soltz MA, Wang CCB, Wong DD, Chao PHG, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260. https://doi.org/10.1115/1.429656
McLoughlin ST, Mahadik B, Fisher J (2022) Bioreactors and scale-up in bone tissue engineering. Bone Tissue Eng 225–247. https://doi.org/10.1007/978-3-030-92014-2_10
Melke J, Zhao F, Rietbergen B, Ito K, Hofmann S (2018) Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation. Europ Cells Mater 36:57. https://doi.org/10.22203/ECM.V036A05
Miller C, George S, Niklason L (2010) Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med 4(8):619–627. https://doi.org/10.1002/TERM.277
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S (2022) Design of nutrient gas-phase bioreactors: a critical comprehensive review. Bioprocess Biosyst Eng 45(8):1239–1265. https://doi.org/10.1007/s00449-022-02728-6
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR (2019) Microfluidic brain-on-a-chip: perspectives for mimicking neural system disorders. Mol Neurobiol 56(12):8489–8512. https://doi.org/10.1007/S12035-019-01653-2
Mol A, Bouten CVC, Zünd G, Günter CI, Visjager JF, Turina MI, Baaijens FPT, Hoerstrup SP (2003) The relevance of large strains in functional tissue engineering of heart valves. Thoracic Cardiov Surg 51(2):78–83. https://doi.org/10.1055/S-2003-38993
Moysidou CM, Barberio C, Owens RM (2021) Advances in engineering human tissue models. Front Bioeng Biotechnol 8:1566. https://doi.org/10.3389/FBIOE.2020.620962
Nakazato T, Kawamura T, Uemura T, Liu L, Li J, Sasai M, Harada A, Ito E, Iseoka H, Toda K, Sawa Y, Miyagawa S (2022) Engineered three-dimensional cardiac tissues maturing in a rotating wall vessel bioreactor remodel diseased hearts in rats with myocardial infarction. Stem Cell Rep 17(5):1170–1182. https://doi.org/10.1016/J.STEMCR.2022.03.012
Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493. https://doi.org/10.1126/SCIENCE.284.5413.489
Obregón R, Ramón Azcón J, Ahadian S (2017) Bioreactors in tissue engineering. Tissue engineering for artificial organs: regenerative medicine, smart diagnostics and personalized medicine. In Hasan A (ed) Tissue engineering for artificial organs: regenerative medicine, smart, vol 2, pp 169–213
Ortega MA, Fernández-Garibay X, Castaño AG, De Chiara F, Hernández-Albors A, Balaguer-Trias J, Ramón-Azcón J (n.d.) Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Pubs.Rsc.Org. https://doi.org/10.1039/x0xx00000x
Orwin E, Shah A, Voorhees A, Ravi V (2007) Bioreactor design for cornea tissue engineering: material–cell interactions. Acta Biomater 3(6):1041–1049. https://doi.org/10.1016/J.ACTBIO.2007.04.008
Paez-Mayorga J, Hernández-Vargas G, Ruiz-Esparza GU, Iqbal HMN, Wang X, Zhang YS, Parra-Saldivar R, Khademhosseini A (2019) Bioreactors for cardiac tissue engineering. Adv Healthcare Mater 8(7):1701504. https://doi.org/10.1002/ADHM.201701504
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 9, 159(2):428–39. https://doi.org/10.1016/j.cell.2014.09.040
Panoskaltsis-Mortari A (2015) Bioreactor development for lung tissue engineering. Curr Transplant Rep 2(1):90. https://doi.org/10.1007/S40472-014-0048-Z
Pasirayi G, Auger V, Scott SM, Rahman PKSM, Islam M, O’hare L, Ali Z (2011) Microfluidic bioreactors for cell culturing: a review. Micro Nanosyst 3(2):137–160. https://doi.org/10.2174/1876402911103020137
Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. Wiley Online Library 16(12):1691–1694. https://doi.org/10.1096/fj.02-0083fje
Peloso A, Ferrario J, Maiga B, Benzoni I, Bianco C, Citro A, Currao M, Malara A, Gaspari A, Balduini A, Abelli M, Piemonti L, Dionigi P, Orlando G, Maestri M (2015) Creation and implantation of acellular rat renal ECM-based scaffolds. Organogenesis 11(2):58–74. https://doi.org/10.1080/15476278.2015.1072661
Pinto DS, da Silva CL, Cabral JM (2019) Scalable expansion of mesenchymal stem/stromal cells in bioreactors: a focus on hydrodynamic characterization. https://doi.org/10.1016/B978-0-12-801238-3.65541-1
Plunkett N, O’Brien FJ (2011) Bioreactors in tissue engineering. Technol Health Care 19(1):55–69. https://doi.org/10.3233/THC-2011-0605
Podichetty JT, Bhaskar PR, Singarapu K, Madihally SV (2015) Multiple approaches to predicting oxygen and glucose consumptions by HepG2 cells on porous scaffolds in an axial‐flow bioreactor. Biotechnol Bioeng 112(2):393–404. https://doi.org/10.1002/bit.25355
Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100(3):235–245. https://doi.org/10.1263/jbb.100.235
Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, Wolvetang EJ, McMahon AP, Holm TM, Davidson AJ (2018) A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Rep 11(2):470. https://doi.org/10.1016/J.STEMCR.2018.06.018
Rafiq QA, Coopman K, Hewitt CJ (2013) Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Curr Opin Chem Eng 2(1):8–16. https://doi.org/10.1016/j.coche.2013.01.005
Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Y Acad Sci 961:210–215. https://doi.org/10.1111/j.1749-6632.2002.tb03087.x
Reinwald Y, Leonard KH, Henstock JR, Whiteley JP, Osborne JM, Waters SL, Levesque P, El Haj AJ (2015) Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs. Tissue Eng Part C Methods 21(1):1–14. https://doi.org/10.1089/ten.tec.2013.0476
Rivron N, Rouwkema J, Truckenmüller R, Karperien M, De Boer J, Van Blitterswijk CA (2009) Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Elsevier 30(28):4851–4858. https://www.sciencedirect.com/science/article/pii/S0142961209006486
Rolev K, O’Donovan DG, Coussons P, King L, Rajan MS (2018) Feasibility study of human corneal endothelial cell transplantation using an in vitro human corneal Model. Cornea 37(6):778–784. https://doi.org/10.1097/ICO.0000000000001555
Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698. https://doi.org/10.1101/GAD.242002
Sabatino MA, Santoro R, Gueven S, Jaquiery C, Wendt DJ, Martin I, Moretti M, Barbero A (2015) Cartilage graft engineering by co‐culturing primary human articular chondrocytes with human bone marrow stromal cells. J Tissue Eng Regenerative Med 9(12):1394–1403. https://doi.org/10.1002/term.1661
Sagita ID, Whulanza Y, Dhelika R, Nurhadi I (2018) Designing electrical stimulated bioreactors for nerve tissue engineering. AIP Conf Proc 1933(1):040019. https://doi.org/10.1063/1.5023989
Saini S, Wick TM (2003) Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 19(2):510–521. https://doi.org/10.1021/BP0256519
Salazar BH, Cashion AT, Dennis RG, Birla RK (2015) Development of a cyclic strain bioreactor for mechanical enhancement and assessment of bioengineered myocardial constructs. Cardiovasc Eng Technol 6(4):533–545. https://doi.org/10.1007/S13239-015-0236-8
Salehi-Nik N, Amoabediny G, Pouran B, Tabesh H, Shokrgozar MA, Haghighipour N, Khatibi N, Anisi F, Mottaghy K, Zandieh-Doulabi B (2013) Engineering parameters in bioreactor’s design: a critical aspect in tissue engineering. BioMed Res Int 2013(3). https://doi.org/10.1155/2013/762132
Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, Schweinlin M, Walles H, Hansmann J (2017) A versatile modular bioreactor platform for tissue engineering. Biotechnol J 12(2):1600326. https://doi.org/10.1002/BIOT.201600326
Schwarz RP, Goodwin TJ, Wolf DA (1992) Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 14(2):51–57. https://doi.org/10.1007/BF01404744
Selden C, Bioengineering BF (2018) Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design. Mdpi.Com. https://doi.org/10.3390/bioengineering5020032
Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V (2018) Bioengineering approaches for bladder regeneration. Int J Mol Sci 19(6):1796. https://doi.org/10.3390/IJMS19061796
Shachar M, Benishti N, Cohen S (2012) Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. Biotechnol Prog 28(6):1551–1559. https://doi.org/10.1002/btpr.1633
Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. https://doi.org/10.1039/C4LC01246A
Shoichet MS, Tate CC, Douglas Baumann M, LaPlaca MC (2008) Strategies for regeneration and repair in the injured central nervous system. Indwelling Neur Implant Strat Contend In Vivo Environ 221–244. https://doi.org/10.1201/9781420009309.ch8
Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, Yaghobian Azari D, Thierry B, Ebrahimi Warkiani M, Ghadiri M (2020) Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Taylor & Francis 40(2):213–230. https://doi.org/10.1080/07388551.2019.1710458
Sikavitsas VI, Bancroft GN, Mikos AG (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62(1):136–148. https://doi.org/10.1002/JBM.10150
Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30(1–3):149–158. https://doi.org/10.1023/A:1008025016272
Somerville RPT, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE ®bioreactor. J Trans Med 10(1). https://doi.org/10.1186/1479-5876-10-69
Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Med 19(5):646–651. https://doi.org/10.1038/nm.3154
Southgate J, Cross W, Eardley I, Thomas DFM, Trejdosiewicz LK (2005) Bladder reconstruction—from cells to materials. Proc Inst Mech Eng Part H J Eng Med 217(4):311–316. https://doi.org/10.1243/095441103322060776
Spier MR, Vandenberghe LPS, Medeiros ABP, Soccol CR (2011) Application of Different Types of Bioreactors in Bioprocesses, Bioreactors. Bioreactors Des Prop Appl pp 55–90
Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T (2009) Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Part A 89(1):96–107. https://doi.org/10.1002/JBM.A.31967
Sun T, Norton D, Haycock JW, Ryan AJ, MacNeil S (2006) Development of a closed bioreactor system for culture of tissue-engineered skin at an air–liquid interface. Tissue Eng 11(11–12):1824–1831. https://doi.org/10.1089/TEN.2005.11.1824
Sun T, Norton D, Vickers N, McArthur SL, Neil SM, Ryan AJ, Haycock JW (2008) Development of a bioreactor for evaluating novel nerve conduits. Biotechnol Bioeng 99(5):1250–1260. https://doi.org/10.1002/BIT.21669
Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829. https://doi.org/10.1002/BTPR.599
Theodoridis K, Aggelidou E, et al (2020) An effective device and method for enhanced cell growth in 3D scaffolds: investigation of cell seeding and proliferation under static and dynamic conditions. Elsevier. https://doi.org/10.1016/j.msec.2020.111060
Tiemessen D, de Jonge P, Daamen W, Feitz W, Geutjes P, Oosterwijk E (2017) The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol 35(10):1531–1539. https://doi.org/10.1007/S00345-017-2013-9/FIGURES/6
Timmins NE, Palfreyman E, Marturana F, Dietmair S, Luikenga S, Lopez G, Fung YL, Minchinton R, Nielsen LK (2009) Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells. Biotechnol Bioeng 104(4):832–840. https://doi.org/10.1002/BIT.22433
Titze I, Hitchcock R, Broadhead K, Webb K, Li W, Gray SD (2004) Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J Biomech 37:1521–1529. https://doi.org/10.1016/j.jbiomech.2004.01.007
Todros S, Spadoni S, Maghin E, Piccoli M, Pavan PG (2021) A novel bioreactor for the mechanical stimulation of clinically relevant scaffolds for muscle tissue engineering purposes. Processes 9(3):474. https://doi.org/10.3390/PR9030474
Tondon A, Kaunas R (2014) The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS ONE 9(2). https://doi.org/10.1371/JOURNAL.PONE.0089592
Tondreau MY, Laterreur V, Gauvin R, Vallières K, Bourget JM, Lacroix D, Tremblay C, Germain L, Ruel J, Auger FA (2015) Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomater 18:176–185. https://doi.org/10.1016/J.ACTBIO.2015.02.026
Tran SC, Cooley AJ, Elder SH (2011) Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol Bioeng 108(6):1421–1429. https://doi.org/10.1002/BIT.23061
Ulbrich C, Wehland M, Pietsch J, Aleshcheva G, Wise P, Van Loon J, Magnusson N, Infanger M, Grosse J, Eilles C, Sundaresan A, Grimm D (2014) The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BioMed Res Int. https://doi.org/10.1155/2014/928507
Uzarski JS, Xia Y, Belmonte JCI, Wertheim JA (2014) New strategies in kidney regeneration and tissue engineering. Curr Opin Nephrol Hypertens 23(4):399–405. https://doi.org/10.1097/01.MNH.0000447019.66970.EA
Vrana N, Knopf-Marques H, Barthes J (Eds) (2020) Biomaterials for organ and tissue regeneration: new technologies and future prospects. Woodhead Publishing
Watanabe S, Inagaki S, Kinouchi I, Takai H, Masuda Y, Mizuno S (2005) Hydrostatic pressure/perfusion culture system designed and validated for engineering tissue. J Biosci Bioeng 100:105–111. https://doi.org/10.1263/jbb.100.105
Webster A, Dyer CE, Haswell SJ, Greenman J (2010) A microfluidic device for tissue biopsy culture and interrogation. Anal Methods 2(8):1005–1007. https://doi.org/10.1039/C0AY00293C
Weston MW, Yoganathan AP (2001) Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng 29(9):752–763. https://doi.org/10.1114/1.1397794
Wolf DA, Kleis SJ (2016) Principles of analogue and true microgravity bioreactors to tissue engineering. Effect Spaceflight Spaceflight Anal Cult Human Microbial Cells Novel Insights Dis Mech 39–60. https://doi.org/10.1007/978-1-4939-3277-1
Wolf F, Rojas González DM, Steinseifer U, Obdenbusch M, Herfs W, Brecher C, Jockenhoevel S, Mela P, Schmitz-Rode T (2018) VascuTrainer: a mobile and disposable bioreactor system for the conditioning of tissue-engineered vascular grafts. Ann Biomed Eng 46(4):616–626. https://doi.org/10.1007/S10439-018-1977
Wong AK, Llanos P, Boroda N, Rosenberg SR, Rabbany SY (2016) A parallel-plate flow chamber for mechanical characterization of endothelial cells exposed to laminar shear stress. Cell Molecul Bioeng 9(1):127–138. https://doi.org/10.1007/S12195-015-0424-5
Wu Z, Zhou Q, Duan H, Wang X, Xiao J, Duan H, Li N, Li C, Wan P, Liu Y, Song Y, Zhou C, Huang Z, Wang Z (2014) Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model. PLoS ONE 9(4):e93012. https://doi.org/10.1371/JOURNAL.PONE.0093012
Wung N, Acott SM, Tosh D, Ellis MJ (2014) Hollow fibre membrane bioreactors for tissue engineering applications. Biotech Lett 36(12):2357–2366. https://doi.org/10.1007/s10529-014-1619-x
Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S (2020) Gut-on-chip: recreating human intestine in vitro. J Tissue Eng 11. https://doi.org/10.1177/2041731420965318
Xie Y, Lu J (2016) Bioreactors for bone tissue engineering. Biomech Biomater Orthoped 115–122. https://doi.org/10.5301/ijao.2011.6333
Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48(2):171–181. https://doi.org/10.1016/j.bone.2010.09.138
Yin CH, Chen W, Hsiao CC, Kuo CY, Chen CL, Wu WT (2007) Production of mouse embryoid bodies with hepatic differentiation potential by stirred tank bioreactor. Biosci Biotechnol Biochem 71(3):728–734. https://doi.org/10.1271/bbb.60568
Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A 18(19–20):1949–1956. https://doi.org/10.1089/TEN.TEA.2011.0647
You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, Im SG (2015) PDMS-based turbulent microfluidic mixer. Lab Chip 15(7):1727–1735. https://doi.org/10.1039/c5lc00070j
Yu H, Chong SK, Hassanbhai AM, Teng Y, Balachander G, Muthukumaran P, Wen F, Teoh SH (2020) Principles of bioreactor design for tissue engineering. Principles Tissue Eng 179–203. https://doi.org/10.1016/B978-0-12-818422-6.00012-5
Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Masse S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Mater 15(6):669–678. https://doi.org/10.1038/nmat4570
Zhao J, Griffin M, Cai J, Li S, Bulter PEM, Kalaskar DM (2016) Bioreactors for tissue engineering: an update. Biochem Eng J 109:268–281. https://doi.org/10.1016/J.BEJ.2016.01.018
Zhao Y, Kankala RK, Wang SB, Chen AZ (2019) Multi-organs-on-chips: towards long-term biomedical investigations. Molecules 24(4):675. https://doi.org/10.3390/molecules24040675
Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y (2018) Reconstruction of structure and function in tissue engineering of solid organs: toward simulation of natural development based on decellularization. J Tissue Eng Regen Med 12(6):1432–1447. https://doi.org/10.1002/TERM.2676
Zhou W, Chen Y, Roh T, Lin Y, Ling S, Zhao S, Lin JD, Khalil N, Cairns DM, Manousiouthakis E, Tse M, Kaplan DL (2018) Multifunctional bioreactor system for human intestine tissues. ACS Biomater Sci Eng 4(1):231. https://doi.org/10.1021/ACSBIOMATERIALS.7B00794
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ahata, B. et al. (2023). Bioreactors for Tissue Engineering. In: Gunduz, O., Egles, C., Pérez, R.A., Ficai, D., Ustundag, C.B. (eds) Biomaterials and Tissue Engineering. Stem Cell Biology and Regenerative Medicine, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-35832-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-35832-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35831-9
Online ISBN: 978-3-031-35832-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)