Skip to main content

Diagnostic Immunology

  • Chapter
  • First Online:
Diagnosis and Treatment of Fungal Infections

Abstract

The frequency of invasive fungal infections has risen dramatically in recent decades, mostly because of a larger population of at-risk patients who are immunocompromised, neutropenic, or critically ill. For clinicians evaluating these patients, it has become increasingly important to make the diagnosis early so that timely antifungal therapy can be instituted. While histopathology and culture for the causative fungus are required for a definitive diagnosis, adequate tissue samples from protected anatomical sites are not always available and culture may lack sensitivity and require several weeks for results to become available. Thus, immunodiagnosis has become an important adjunctive strategy to diagnose most of the clinically relevant fungi. Many immunodiagnostic methods have been developed and generally target three important aspects of the infection: host antibody, fungal antigen, and fungal metabolites.

This chapter outlines the available immunologic tests according to what component of the invading pathogen or host immune response they target and provides some discussion of their strengths and weaknesses. In addition to a review of pan-fungal testing using 1,3-β-D-glucan, the discussion is focused on the following diseases: invasive candidiasis, invasive aspergillosis, cryptococcosis, histoplasmosis, blastomycosis, coccidioidomycosis, and paracoccidioidomycosis. Recommendations for utilizing the currently available immunodiagnostic tests are discussed for individual fungal species and specific disease manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berenguer J, et al. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis. 1993;17(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  2. Horvath JA, Dummer S. The use of respiratory-tract cultures in the diagnosis of invasive pulmonary aspergillosis. Am J Med. 1996;100(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  3. White SK, et al. (1→3)-beta-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst Rev. 2020;7:CD009833.

    PubMed  Google Scholar 

  4. Karageorgopoulos DE, et al. beta-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–70.

    Article  CAS  PubMed  Google Scholar 

  5. Onishi A, et al. Diagnostic accuracy of serum 1,3-beta-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol. 2012;50(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hou TY, et al. The screening performance of serum 1,3-beta-D-glucan in patients with invasive fungal diseases: a meta-analysis of prospective cohort studies. PLoS One. 2015;10(7):e0131602.

    Article  PubMed  PubMed Central  Google Scholar 

  7. He S, et al. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-beta-D-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect. 2015;48(4):351–61.

    Article  CAS  PubMed  Google Scholar 

  8. Xiaoling L, et al. Diagnostic efficacy of serum 1,3-beta-D-glucan for invasive fungal infection: an update meta-analysis based on 37 case or cohort studies. Open Med. 2018;13:329–37.

    Article  Google Scholar 

  9. Lamoth F, et al. beta-Glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: a systematic review and meta-analysis of cohort studies from the Third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis. 2012;54(5):633–43.

    Article  PubMed  Google Scholar 

  10. White SK, et al. Diagnostic accuracy of beta-d-glucan (fungitell) testing among patients with hematologic malignancies or solid organ tumors: a systematic review and meta-analysis. Am J Clin Pathol. 2019;151(3):275–85.

    Article  PubMed  Google Scholar 

  11. Posteraro B, et al. Early diagnosis of candidemia in intensive care unit patients with sepsis: a prospective comparison of (1→3)-beta-D-glucan assay, Candida score, and colonization index. Crit Care. 2011;15(5):R249.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hanson KE, et al. beta-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS One. 2012;7(8):e42282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karageorgopoulos DE, et al. Accuracy of beta-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: a meta-analysis. Clin Microbiol Infect. 2013;19(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  14. Del Corpo O, et al. Diagnostic accuracy of serum (1-3)-beta-D-glucan for Pneumocystis jirovecii pneumonia: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(9):1137–43.

    Article  PubMed  Google Scholar 

  15. Li WJ, et al. Diagnosis of pneumocystis pneumonia using serum (1-3)-beta-D-Glucan: a bivariate meta-analysis and systematic review. J Thorac Dis. 2015;7(12):2214–25.

    PubMed  PubMed Central  Google Scholar 

  16. Melo ASA, et al. Evaluation of (1→3)-beta-D-glucan assay for diagnosing paracoccidioidomycosis. Mycoses. 2020;63(1):38–42.

    Article  PubMed  Google Scholar 

  17. Kanamori H, et al. Measurement of (1-3)-beta-D-glucan derived from different gauze types. Tohoku J Exp Med. 2009;217(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  18. Kimura Y, et al. Clinical and experimental studies of the limulus test after digestive surgery. Surg Today. 1995;25(9):790–4.

    Article  CAS  PubMed  Google Scholar 

  19. Marty FM, et al. Reactivity of (1→3)-beta-d-glucan assay with commonly used intravenous antimicrobials. Antimicrob Agents Chemother. 2006;50(10):3450–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohr JF, et al. Prospective survey of (1→3)-beta-D-glucan and its relationship to invasive candidiasis in the surgical intensive care unit setting. J Clin Microbiol. 2011;49(1):58–61.

    Article  PubMed  Google Scholar 

  21. Mennink-Kersten MA, Ruegebrink D, Verweij PE. Pseudomonas aeruginosa as a cause of 1,3-beta-D-glucan assay reactivity. Clin Infect Dis. 2008;46(12):1930–1.

    Article  PubMed  Google Scholar 

  22. Mennink-Kersten MA, Warris A, Verweij PE. 1,3-beta-D-glucan in patients receiving intravenous amoxicillin-clavulanic acid. N Engl J Med. 2006;354(26):2834–5.

    Article  CAS  PubMed  Google Scholar 

  23. Pickering JW, et al. Evaluation of a (1→3)-beta-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2005;43(12):5957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obayashi T, et al. Reappraisal of the serum (1→3)-beta-D-glucan assay for the diagnosis of invasive fungal infections–a study based on autopsy cases from 6 years. Clin Infect Dis. 2008;46(12):1864–70.

    Article  CAS  PubMed  Google Scholar 

  25. Hachem RY, et al. Utility of galactomannan enzyme immunoassay and (1,3) beta-D-glucan in diagnosis of invasive fungal infections: low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J Clin Microbiol. 2009;47(1):129–33.

    Article  CAS  PubMed  Google Scholar 

  26. Persat F, et al. Contribution of the (1→3)-beta-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2008;46(3):1009–13.

    Article  PubMed  Google Scholar 

  27. Nucci M, et al. Discontinuation of empirical antifungal therapy in ICU patients using 1,3-beta-d-glucan. J Antimicrob Chemother. 2016;71(9):2628–33.

    Article  CAS  PubMed  Google Scholar 

  28. De Pascale G, et al. (1,3)-beta-D-Glucan-based empirical antifungal interruption in suspected invasive candidiasis: a randomized trial. Crit Care. 2020;24(1):550.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cento V, et al. Quantification of 1,3-beta-d-glucan by Wako beta-glucan assay for rapid exclusion of invasive fungal infections in critical patients: a diagnostic test accuracy study. Mycoses. 2020;63(12):1299–310.

    Article  CAS  PubMed  Google Scholar 

  30. Pappas PG, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.

    Article  PubMed  Google Scholar 

  31. Donnelly JP, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71(6):1367–76.

    Article  PubMed  Google Scholar 

  32. Tsay SV, et al. Burden of candidemia in the United States, 2017. Clin Infect Dis. 2020;71(9):e449–53.

    PubMed  Google Scholar 

  33. Parra-Sanchez M, et al. Candida albicans germ-tube antibody: evaluation of a new automatic assay for diagnosing invasive candidiasis in ICU patients. Mycopathologia. 2017;182(7-8):645–52.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Mazuelos E, et al. beta-D-Glucan and Candida albicans germ tube antibody in ICU patients with invasive candidiasis. Intensive Care Med. 2015;41(8):1424–32.

    Article  CAS  PubMed  Google Scholar 

  35. Mitsutake K, et al. Enolase antigen, mannan antigen, Cand-Tec antigen, and beta-glucan in patients with candidemia. J Clin Microbiol. 1996;34(8):1918–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanchez ML, et al. Diagnosis of disseminated candidiasis in hospitalized patients using the Cand-Tec latex agglutination assay. Mycopathologia. 1992;118(3):153–62.

    Article  CAS  PubMed  Google Scholar 

  37. Sendid B, et al. New enzyme immunoassays for sensitive detection of circulating Candida albicans mannan and antimannan antibodies: useful combined test for diagnosis of systemic candidiasis. J Clin Microbiol. 1999;37(5):1510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mikulska M, et al. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia. Crit Care. 2010;14(6):R222.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Held J, et al. Comparison of (1→3)-beta-D-glucan, mannan/anti-mannan antibodies, and Cand-Tec Candida antigen as serum biomarkers for candidemia. J Clin Microbiol. 2013;51(4):1158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walsh TJ, et al. Diagnosis and therapeutic monitoring of invasive candidiasis by rapid enzymatic detection of serum D-arabinitol. Am J Med. 1995;99(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  41. Yeo SF, et al. Measurement of serum D-arabinitol/creatinine ratios for initial diagnosis and for predicting outcome in an unselected, population-based sample of patients with Candida fungemia. J Clin Microbiol. 2006;44(11):3894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lunel FM, et al. Performance of the new platelia candida plus assays for the diagnosis of invasive Candida infection in patients undergoing myeloablative therapy. Med Mycol. 2011;49(8):848–55.

    Article  PubMed  Google Scholar 

  43. Dupuis C, et al. Performance of repeated measures of (1-3)-beta-D-glucan, mannan antigen, and antimannan antibodies for the diagnosis of invasive candidiasis in ICU patients: a preplanned ancillary analysis of the EMPIRICUS randomized clinical trial. Open Forum. Infect Dis. 2021;8(3):ofab080.

    Google Scholar 

  44. Verweij PE, et al. Sandwich enzyme-linked immunosorbent assay compared with Pastorex latex agglutination test for diagnosing invasive aspergillosis in immunocompromised patients. J Clin Microbiol. 1995;33(7):1912–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sulahian A, et al. Comparison of an enzyme immunoassay and latex agglutination test for detection of galactomannan in the diagnosis of invasive aspergillosis. Eur J Clin Microbiol Infect Dis. 1996;15(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  46. Mercier T, et al. Defining galactomannan positivity in the updated EORTC/MSGERC consensus definitions of invasive fungal diseases. Clin Infect Dis. 2021;72(Suppl 2):S89–94.

    Article  CAS  PubMed  Google Scholar 

  47. Wheat LJ. Rapid diagnosis of invasive aspergillosis by antigen detection. Transpl Infect Dis. 2003;5(4):158–66.

    Article  CAS  PubMed  Google Scholar 

  48. Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42(10):1417–27.

    Article  CAS  PubMed  Google Scholar 

  49. Guo YL, et al. Accuracy of BAL galactomannan in diagnosing invasive aspergillosis: a bivariate metaanalysis and systematic review. Chest. 2010;138(4):817–24.

    Article  PubMed  Google Scholar 

  50. Zou M, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS One. 2012;7(8):e43347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avni T, et al. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J Clin Microbiol. 2012;50(11):3652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pan Z, et al. Diagnostic accuracy of a novel lateral-flow device in invasive aspergillosis: a meta-analysis. J Med Microbiol. 2015;64(7):702–7.

    Article  CAS  PubMed  Google Scholar 

  53. Leeflang MM, et al. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev. 2015;12:CD007394.

    Google Scholar 

  54. de Heer K, et al. Galactomannan detection in broncho-alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev. 2019;5:CD012399.

    PubMed  Google Scholar 

  55. Ullmann AJ, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect. 2018;24(Suppl 1):e1–e38.

    Article  PubMed  Google Scholar 

  56. Koo S, et al. Prognostic features of galactomannan antigenemia in galactomannan-positive invasive aspergillosis. J Clin Microbiol. 2010;48(4):1255–60.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chai LY, et al. Early serum galactomannan trend as a predictor of outcome of invasive aspergillosis. J Clin Microbiol. 2012;50(7):2330–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lass-Florl C. How to make a fast diagnosis in invasive aspergillosis. Med Mycol. 2019;57(2):S155–60.

    Article  CAS  PubMed  Google Scholar 

  59. Mercier T, et al. Galactomannan, a surrogate marker for outcome in invasive aspergillosis: finally coming of age. Front Microbiol. 2018;9:661.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vergidis P, et al. Reduction in false-positive Aspergillus serum galactomannan enzyme immunoassay results associated with use of piperacillin-tazobactam in the United States. J Clin Microbiol. 2014;52(6):2199–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Husain S, et al. Performance characteristics of the platelia Aspergillus enzyme immunoassay for detection of Aspergillus galactomannan antigen in bronchoalveolar lavage fluid. Clin Vaccine Immunol. 2008;15(12):1760–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Musher B, et al. Aspergillus galactomannan enzyme immunoassay and quantitative PCR for diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. J Clin Microbiol. 2004;42(12):5517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. D’Haese J, et al. Detection of galactomannan in bronchoalveolar lavage fluid samples of patients at risk for invasive pulmonary aspergillosis: analytical and clinical validity. J Clin Microbiol. 2012;50(4):1258–63.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou W, et al. Diagnostic value of galactomannan antigen test in serum and bronchoalveolar lavage fluid samples from patients with nonneutropenic invasive pulmonary aspergillosis. J Clin Microbiol. 2017;55(7):2153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haydour Q, et al. Diagnosis of fungal infections. A systematic review and meta-analysis supporting American Thoracic Society practice guideline. Ann Am Thorac Soc. 2019;16(9):1179–88.

    Article  PubMed  Google Scholar 

  66. Chong GM, et al. Diagnostic performance of galactomannan antigen testing in cerebrospinal fluid. J Clin Microbiol. 2016;54(2):428–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jenks JD, Hoenigl M. Point-of-care diagnostics for invasive aspergillosis: nearing the finish line. Expert Rev Mol Diagn. 2020;20(10):1009–17.

    Article  CAS  PubMed  Google Scholar 

  68. Koo S, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis. 2014;59(12):1733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen SC, et al. Clinical manifestations of Cryptococcus gattii infection: determinants of neurological sequelae and death. Clin Infect Dis. 2012;55(6):789–98.

    Article  PubMed  Google Scholar 

  70. Hansen J, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20(1):52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Williams DA, et al. Evaluation of fingerstick cryptococcal antigen lateral flow assay in HIV-infected persons: a diagnostic accuracy study. Clin Infect Dis. 2015;61(3):464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lindsley MD, et al. Evaluation of a newly developed lateral flow immunoassay for the diagnosis of cryptococcosis. Clin Infect Dis. 2011;53(4):321–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jarvis JN, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53(10):1019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Binnicker MJ, et al. Comparison of four assays for the detection of cryptococcal antigen. Clin Vaccine Immunol. 2012;19(12):1988–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McMullan BJ, et al. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory. PLoS One. 2012;7(11):e49541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boulware DR, et al. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg Infect Dis. 2014;20(1):45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kabanda T, et al. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis. 2014;58(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  78. Jitmuang A, et al. Performance of the cryptococcal antigen lateral flow assay in non-HIV-related cryptococcosis. J Clin Microbiol. 2016;54(2):460–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hevey MA, et al. Performance of the lateral flow assay and the latex agglutination serum cryptococcal antigen test in cryptococcal disease in patients with and without HIV. J Clin Microbiol. 2020;58(11):e01563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Senghor Y, et al. Cryptococcal antigen detection in broncho-alveolar lavage fluid. Med Mycol. 2018;56(6):774–7.

    Article  CAS  PubMed  Google Scholar 

  81. Oshima K, et al. Examination of cryptococcal glucuronoxylomannan antigen in bronchoalveolar lavage fluid for diagnosing pulmonary cryptococcosis in HIV-negative patients. Med Mycol. 2018;56(1):88–94.

    Article  PubMed  Google Scholar 

  82. Drain PK, et al. Validation of clinic-based cryptococcal antigen lateral flow assay screening in HIV-infected adults in South Africa. Sci Rep. 2019;9(1):2687.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang HR, et al. Evaluation of a new cryptococcal antigen lateral flow immunoassay in serum, cerebrospinal fluid and urine for the diagnosis of cryptococcosis: a meta-analysis and systematic review. PLoS One. 2015;10(5):e0127117.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tintelnot K, et al. Pitfalls in Serological Diagnosis of Cryptococcus gattii Infections. Med Mycol. 2015;53(8):874–9.

    Article  CAS  PubMed  Google Scholar 

  85. Perfect JR, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322.

    Article  PubMed  Google Scholar 

  86. Asawavichienjinda T, Sitthi-Amorn C, Tanyanont V. Serum cyrptococcal antigen: diagnostic value in the diagnosis of AIDS-related cryptococcal meningitis. J Med Assoc Thail. 1999;82(1):65–71.

    CAS  Google Scholar 

  87. Antinori S, et al. The role of cryptococcal antigen assay in diagnosis and monitoring of cryptococcal meningitis. J Clin Microbiol. 2005;43(11):5828–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Berlin L, Pincus JH. Cryptococcal meningitis. False-negative antigen test results and cultures in nonimmunosuppressed patients. Arch Neurol. 1989;46(12):1312–6.

    Article  CAS  PubMed  Google Scholar 

  89. Aberg JA, Mundy LM, Powderly WG. Pulmonary cryptococcosis in patients without HIV infection. Chest. 1999;115(3):734–40.

    Article  CAS  PubMed  Google Scholar 

  90. Singh N, et al. Pulmonary cryptococcosis in solid organ transplant recipients: clinical relevance of serum cryptococcal antigen. Clin Infect Dis. 2008;46(2):e12–8.

    Article  PubMed  Google Scholar 

  91. Pappas PG, et al. Cryptococcosis in human immunodeficiency virus-negative patients in the era of effective azole therapy. Clin Infect Dis. 2001;33(5):690–9.

    Article  CAS  PubMed  Google Scholar 

  92. Lin TY, et al. Cryptococcal disease in patients with or without human immunodeficiency virus: clinical presentation and monitoring of serum cryptococcal antigen titers. J Microbiol Immunol Infect. 2009;42(3):220–6.

    PubMed  Google Scholar 

  93. Chuck SL, Sande MA. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989;321(12):794–9.

    Article  CAS  PubMed  Google Scholar 

  94. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995;8(4):515–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Powderly WG, et al. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: value in the management of AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1994;18(5):789–92.

    Article  CAS  PubMed  Google Scholar 

  96. Young EJ, et al. Pleural effusions due to Cryptococcus neoformans: a review of the literature and report of two cases with cryptococcal antigen determinations. Am Rev Respir Dis. 1980;121(4):743–7.

    CAS  PubMed  Google Scholar 

  97. McManus EJ, Jones JM. Detection of a Trichosporon beigelii antigen cross-reactive with Cryptococcus neoformans capsular polysaccharide in serum from a patient with disseminated Trichosporon infection. J Clin Microbiol. 1985;21(5):681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Westerink MA, et al. Septicemia due to DF-2. Cause of a false-positive cryptococcal latex agglutination result. Am J Med. 1987;83(1):155–8.

    Article  CAS  PubMed  Google Scholar 

  99. Chanock SJ, Toltzis P, Wilson C. Cross-reactivity between Stomatococcus mucilaginosus and latex agglutination for cryptococcal antigen. Lancet. 1993;342(8879):1119–20.

    Article  CAS  PubMed  Google Scholar 

  100. Williams B, et al. Diagnosis of histoplasmosis by antigen detection during an outbreak in Indianapolis. Ind Arch Pathol Lab Med. 1994;118(12):1205–8.

    CAS  PubMed  Google Scholar 

  101. Wheat J, et al. The diagnostic laboratory tests for histoplasmosis: analysis of experience in a large urban outbreak. Ann Intern Med. 1982;97(5):680–5.

    Article  CAS  PubMed  Google Scholar 

  102. Swartzentruber S, et al. Diagnosis of acute pulmonary histoplasmosis by antigen detection. Clin Infect Dis. 2009;49(12):1878–82.

    Article  CAS  PubMed  Google Scholar 

  103. Hage CA, et al. A multicenter evaluation of tests for diagnosis of histoplasmosis. Clin Infect Dis. 2011;53(5):448–54.

    Article  PubMed  Google Scholar 

  104. Wheat LJ, et al. Diagnosis of histoplasmosis in patients with the acquired immunodeficiency syndrome by detection of Histoplasma capsulatum polysaccharide antigen in bronchoalveolar lavage fluid. Am Rev Respir Dis. 1992;145(6):1421–4.

    Article  CAS  PubMed  Google Scholar 

  105. Bloch KC, et al. Improvement in diagnosis of histoplasma meningitis by combined testing for histoplasma antigen and immunoglobulin G and immunoglobulin M anti-histoplasma antibody in cerebrospinal fluid. Clin Infect Dis. 2018;66(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  106. Durkin MM, Connolly PA, Wheat LJ. Comparison of radioimmunoassay and enzyme-linked immunoassay methods for detection of Histoplasma capsulatum var. capsulatum antigen. J Clin Microbiol. 1997;35(9):2252–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Caceres DH, et al. Multicenter validation of commercial antigenuria reagents to diagnose progressive disseminated histoplasmosis in people living with HIV/AIDS in two Latin American countries. J Clin Microbiol. 2018;56(6):e01959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martinez-Gamboa A, et al. Diagnostic accuracy of antigen detection in urine and molecular assays testing in different clinical samples for the diagnosis of progressive disseminated histoplasmosis in patients living with HIV/AIDS: a prospective multicenter study in Mexico. PLoS Negl Trop Dis. 2021;15(3):e0009215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith JA, Kauffman CA. Blastomycosis. Proc Am Thorac Soc. 2010;7(3):173–80.

    Article  PubMed  Google Scholar 

  110. Bariola JR, et al. Detection of Blastomyces dermatitidis antigen in patients with newly diagnosed blastomycosis. Diagn Microbiol Infect Dis. 2011;69(2):187–91.

    Article  CAS  PubMed  Google Scholar 

  111. Connolly P, et al. Blastomyces dermatitidis antigen detection by quantitative enzyme immunoassay. Clin Vaccine Immunol. 2012;19(1):53–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pappagianis D, Krasnow RI, Beall S. False-positive reactions of cerebrospinal fluid and diluted sera with the coccidioidal latex-agglutination test. Am J Clin Pathol. 1976;66(5):916–21.

    Article  CAS  PubMed  Google Scholar 

  113. Blair JE, et al. Serologic testing for symptomatic coccidioidomycosis in immunocompetent and immunosuppressed hosts. Mycopathologia. 2006;162(5):317–24.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Durkin M, et al. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin Infect Dis. 2008;47(8):69–73.

    Article  Google Scholar 

  115. Blair JE, et al. Clinical specificity of the enzyme immunoassay test for coccidioidomycosis varies according to the reason for its performance. Clin Vaccine Immunol. 2013;20(1):95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Durkin M, et al. Detection of Coccidioides antigenemia following dissociation of immune complexes. Clin Vaccine Immunol. 2009;16(10):1453–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wheat LJ, et al. Significance of Histoplasma antigen in the cerebrospinal fluid of patients with meningitis. Arch Intern Med. 1989;149(2):302–4.

    Article  CAS  PubMed  Google Scholar 

  118. Hage CA, et al. Diagnosis of histoplasmosis by antigen detection in BAL fluid. Chest. 2010;137(3):623–8.

    Article  CAS  PubMed  Google Scholar 

  119. Smith CE, et al. Serological tests in the diagnosis and prognosis of coccidioidomycosis. Am J Hyg. 1950;52(1):1–21.

    CAS  PubMed  Google Scholar 

  120. Bouza E, et al. Coccidioidal meningitis. An analysis of thirty-one cases and review of the literature. Medicine. 1981;60(3):139–72.

    Article  CAS  PubMed  Google Scholar 

  121. Antoniskis D, et al. Seronegative disseminated coccidioidomycosis in patients with HIV infection. AIDS. 1990;4(7):691–3.

    Article  CAS  PubMed  Google Scholar 

  122. Azar MM, Hage CA. Laboratory diagnostics for histoplasmosis. J Clin Microbiol. 2017;55(6):1612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Richer SM, et al. Development of a highly sensitive and specific blastomycosis antibody enzyme immunoassay using Blastomyces dermatitidis surface protein BAD-1. Clin Vaccine Immunol. 2014;21(2):143–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Frost HM, Novicki TJ. Blastomyces antigen detection for diagnosis and management of blastomycosis. J Clin Microbiol. 2015;53(11):3660–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kassis C, et al. Advances in diagnosis of progressive pulmonary and disseminated coccidioidomycosis. Clin Infect Dis. 2021;72(6):968–75.

    Article  CAS  PubMed  Google Scholar 

  126. Bamberger DM, et al. Cerebrospinal fluid Coccidioides antigen testing in the diagnosis and management of central nervous system coccidioidomycosis. Mycoses. 2015;58(10):598–602.

    Article  PubMed  Google Scholar 

  127. Connolly PA, et al. Detection of histoplasma antigen by a quantitative enzyme immunoassay. Clin Vaccine Immunol. 2007;14(12):1587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang X, Gibson B Jr, Daly TM. Evaluation of commercially available reagents for the diagnosis of histoplasmosis infection in immunocompromised patients. J Clin Microbiol. 2013;51(12):4095–101.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Myint T, et al. HIV-Associated histoplasmosis: current perspectives. HIV AIDS. 2020;12:113–25.

    CAS  Google Scholar 

  130. Fandino-Devia E, et al. Antigen detection in the diagnosis of histoplasmosis: a meta-analysis of diagnostic performance. Mycopathologia. 2016;181(3-4):197–205.

    Article  CAS  PubMed  Google Scholar 

  131. Caceres DH, et al. Diagnosis of progressive disseminated histoplasmosis in advanced HIV: a meta-analysis of assay analytical performance. J Fungi. 2019;5(3):76.

    Article  CAS  Google Scholar 

  132. Wheat LJ, et al. Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis. 2007;45(7):807–25.

    Article  PubMed  Google Scholar 

  133. http://www.miravistalabs.com/. Accessed 20 November 2013.

  134. Baumgardner DJ. Use of urine antigen testing for blastomyces in an integrated health system. J Patient Cent Res Rev. 2018;5(2):176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Saccente M, Woods GL. Clinical and laboratory update on blastomycosis. Clin Microbiol Rev. 2010;23(2):367–81.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Durkin M, et al. Antigen assay with the potential to aid in diagnosis of blastomycosis. J Clin Microbiol. 2004;42(10):4873–5.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Linder KA, Kauffman CA. Current and new perspectives in the diagnosis of blastomycosis and histoplasmosis. J Fungi. 2020;7(1):12.

    Article  Google Scholar 

  138. Malo J, et al. Enhanced antibody detection and diagnosis of coccidioidomycosis with the MiraVista IgG and IgM detection enzyme immunoassay. J Clin Microbiol. 2017;55(3):893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaufman L, et al. Comparative evaluation of commercial Premier EIA and microimmunodiffusion and complement fixation tests for Coccidioides immitis antibodies. J Clin Microbiol. 1995;33(3):618–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kassis C, et al. Role of coccidioides antigen testing in the cerebrospinal fluid for the diagnosis of coccidioidal meningitis. Clin Infect Dis. 2015;61(10):1521–6.

    Article  CAS  PubMed  Google Scholar 

  141. Grys TE, et al. Comparison of two FDA-cleared EIA assays for the detection of Coccidioides antibodies against a composite clinical standard. Med Mycol. 2018;2018:94.

    Google Scholar 

  142. Stockamp NW, Thompson GR. Coccidioidomycosis. Infect Dis Clin N Am. 2016;30(1):229–46.

    Article  Google Scholar 

  143. Malo J, et al. Update on the diagnosis of pulmonary coccidioidomycosis. Ann Am Thorac Soc. 2014;11(2):243–53.

    Article  PubMed  Google Scholar 

  144. Nguyen C, et al. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev. 2013;26(3):505–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gabe LM, Malo J, Knox KS. Diagnosis and management of coccidioidomycosis. Clin Chest Med. 2017;38(3):417–33.

    Article  PubMed  Google Scholar 

  146. Mendoza N, Blair JE. The utility of diagnostic testing for active coccidioidomycosis in solid organ transplant recipients. Am J Transplant. 2013;13(4):1034–9.

    Article  CAS  PubMed  Google Scholar 

  147. Nanayakkara DD, Blodget E. Coccidioidomycosis in solid organ transplant recipients. Curr Opin Organ Transplant. 2019;24(4):465–8.

    Article  PubMed  Google Scholar 

  148. Johnson RH, Einstein HE. Coccidioidal meningitis. Clin Infect Dis. 2006;42(1):103–7.

    Article  PubMed  Google Scholar 

  149. Ampel NM. Coccidioidomycosis: changing concepts and knowledge gaps. J Fungi. 2020;6(4):354.

    Article  CAS  Google Scholar 

  150. Galgiani JN, Grace GM, Lundergan LL. New serologic tests for early detection of coccidioidomycosis. J Infect Dis. 1991;163(3):671–4.

    Article  CAS  PubMed  Google Scholar 

  151. Johnson R, et al. A reformulated spherule-derived coccidioidin (Spherusol) to detect delayed-type hypersensitivity in coccidioidomycosis. Mycopathologia. 2012;174(5-6):353–8.

    Article  PubMed  Google Scholar 

  152. de Camargo ZP. Serology of paracoccidioidomycosis. Mycopathologia. 2008;165(4-5):289–302.

    Article  PubMed  Google Scholar 

  153. Perenha-Viana MC, et al. Serological diagnosis of paracoccidioidomycosis through a Western blot technique. Clin Vaccine Immunol. 2012;19(4):616–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vidal MS, et al. Serological diagnosis of paracoccidioidomycosis: high rate of inter-laboratorial variability among medical mycology reference centers. PLoS Negl Trop Dis. 2014;8(9):e3174.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Salzer HJF, et al. Diagnosis and management of systemic endemic mycoses causing pulmonary disease. Respiration. 2018;96(3):283–301.

    Article  CAS  PubMed  Google Scholar 

  156. Mendes RP, et al. Paracoccidioidomycosis: current perspectives from Brazil. Open Microbiol J. 2017;11:224–82.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Salina MA, et al. Detection of circulating Paracoccidioides brasiliensis antigen in urine of paracoccidioidomycosis patients before and during treatment. J Clin Microbiol. 1998;36(6):1723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Marques da Silva SH, et al. Detection of circulating gp43 antigen in serum, cerebrospinal fluid, and bronchoalveolar lavage fluid of patients with paracoccidioidomycosis. J Clin Microbiol. 2003;41(8):3675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Figueiredo L, Finco A, Rocha E, Oliveira L, et al. Detection of antibodies anti-gp43 of Paracoccidioides brasiliensis in sera samples by double-sandwich ELISA. Ann Biotechnol. 2019;2(1):1017.

    Google Scholar 

  160. Marques da Silva SH, et al. Monitoring gp43 antigenemia in Paracoccidioidomycosis patients during therapy. J Clin Microbiol. 2004;42(6):2419–24.

    Article  PubMed  Google Scholar 

  161. Pinheiro BG, et al. Molecular tools for detection and identification of paracoccidioides species: current status and future perspectives. J Fungi. 2020;6(4):293.

    Article  CAS  Google Scholar 

Suggested Reading

  • Donnelly JP, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71(6):1367–76.

    Article  PubMed  Google Scholar 

  • Hanson KE, et al. beta-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS One. 2012;7(8):e42282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Held J, et al. Comparison of (1→3)-beta-D-glucan, mannan/anti-mannan antibodies, and Cand-Tec Candida antigen as serum biomarkers for candidemia. J Clin Microbiol. 2013;51(4):1158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HR, et al. Evaluation of a new cryptococcal antigen lateral flow immunoassay in serum, cerebrospinal fluid and urine for the diagnosis of cryptococcosis: a meta-analysis and systematic review. PLoS One. 2015;10(5):e0127117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karageorgopoulos DE, et al. beta-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–70.

    Article  CAS  PubMed  Google Scholar 

  • Kassis C, et al. Advances in diagnosis of progressive pulmonary and disseminated coccidioidomycosis. Clin Infect Dis. 2021;72(6):968–75.

    Article  CAS  PubMed  Google Scholar 

  • Leeflang MM, et al. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev. 2015;12:CD007394.

    Google Scholar 

  • Linder KA, Kauffman CA. Current and new perspectives in the diagnosis of blastomycosis and histoplasmosis. J Fungi. 2020;7(1):12.

    Article  Google Scholar 

  • Onishi A, et al. Diagnostic accuracy of serum 1,3-beta-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol. 2012;50(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Z, et al. Diagnostic accuracy of a novel lateral-flow device in invasive aspergillosis: a meta-analysis. J Med Microbiol. 2015;64(7):702–7.

    Article  CAS  PubMed  Google Scholar 

  • Perfect JR, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291–322.

    Article  PubMed  Google Scholar 

  • Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42(10):1417–27.

    Article  CAS  PubMed  Google Scholar 

  • Stockamp NW, Thompson GR. Coccidioidomycosis. Infect Dis Clin N Am. 2016;30(1):229–46.

    Article  Google Scholar 

  • Wheat LJ, et al. Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis. 2007;45(7):807–25.

    Article  PubMed  Google Scholar 

  • White SK, et al. (1→3)-beta-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst Rev. 2020;7:CD009833.

    PubMed  Google Scholar 

  • Zou M, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS One. 2012;7(8):e43347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conte, M., Pfeiffer, C.D., Wong, B. (2023). Diagnostic Immunology. In: Hospenthal, D.R., Rinaldi, M.G., Walsh, T.J. (eds) Diagnosis and Treatment of Fungal Infections. Springer, Cham. https://doi.org/10.1007/978-3-031-35803-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35803-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35802-9

  • Online ISBN: 978-3-031-35803-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics