Skip to main content

Diagnostic Molecular Mycology

  • Chapter
  • First Online:
Diagnosis and Treatment of Fungal Infections
  • 450 Accesses

Abstract

Fungal identification has become more urgent than ever due to the increasing number of fungal species that are found to be pathogenic for humans. While the major fungal pathogens probably do not exceed 50 commonly encountered species, a growing immunosuppressed patient population and increasingly aggressive medical therapies predispose patients to a broader spectrum of fungi capable of causing disease than ever before. While clinical microbiology laboratories can identify the common fungi using classical methods such as biochemistry and morphology, the rarer fungi need more complex identification methods. These methods are drawn from the field of molecular biology. Fungi offer unique problems that must be addressed before existing molecular methods can be applied to clinical specimens. Fortunately, molecular mycology is accelerating in the rate of diagnostic assay development as several molecular assays have been FDA approved, and many more have been commercialized and are now available. These assays can be focused on single species, major pathogens from one genus, and, in some cases, pan fungal. Fungal molecular diagnostics has advanced from PCR to whole-genome sequencing, and many assays are incorporating emerging technologies. While still lagging behind bacterial and viral diagnostics, the increasing number of commercial and approved fungal diagnostic assays will be welcome additions to the clinical microbiology laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schelenz S, Barnes RA, Barton RC, Cleverley JR, Lucas SB, Kibbler CC, et al. British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis. 2015;15(4):461–74.

    Article  PubMed  Google Scholar 

  2. Lass-Florl C. Current challenges in the diagnosis of fungal infections. In: Lion T, editor. Human fungal pathogen identification. Methods in molecular biology. New York: Humana Press; 2017.

    Google Scholar 

  3. Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis. 1993;17(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  4. Pettit AC, Malani AN. Outbreak of fungal infections associated with contaminated methylprednisolone acetate: an update. Curr Infect Dis Rep. 2015;17(1):441.

    Article  PubMed  Google Scholar 

  5. Neblett Fanfair R, Benedict K, Bos J, Bennett SD, Lo YC, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med. 2012;367(23):2214–25.

    Article  PubMed  Google Scholar 

  6. Ganesan A, Wells J, Shaikh F, Peterson P, Bradley W, Carson ML, et al. Molecular detection of filamentous fungi in formalin-fixed paraffin-embedded specimens in invasive fungal wound infections is feasible with high specificity. J Clin Microbiol. 2019;58(1):e01259.

    Article  PubMed  PubMed Central  Google Scholar 

  7. White PL, Dhillon R, Cordey A, Hughes H, Faggian F, Soni S, et al. A national strategy to diagnose COVID-19 associated invasive fungal disease in the ICU. Clin Infect Dis. 2021;73:e1634.

    Article  CAS  PubMed  Google Scholar 

  8. Wickes BL, Wiederhold NP. Molecular diagnostics in medical mycology. Nat Commun. 2018;9(1):5135.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dixon DM, McNeil MM, Cohen ML, Gellin BG, La Montagne JR. Fungal infections: a growing threat. Public Health Rep. 1996;111(3):226–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Casadevall A. Fungi and the rise of mammals. PLoS Pathog. 2012;8(8):e1002808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skiada A, Pavleas I, Drogari-Apiranthitou M. Rare fungal infectious agents: a lurking enemy. F1000Res. 2017;6:1917.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rodrigues ML, Albuquerque PC. Searching for a change: the need for increased support for public health and research on fungal diseases. PLoS Negl Trop Dis. 2018;12(6):e0006479.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Casadevall A. Fungal diseases in the 21st century: the near and far horizons. Pathog Immun. 2018;3(2):183–96.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Steinbach WJ, Mitchell TG, Schell WA, Espinel-Ingroff A, Coico RF, Walsh TJ, et al. Status of medical mycology education. Med Mycol. 2003;41(6):457–67.

    Article  PubMed  Google Scholar 

  15. Kwon-Chung KJ. Histoplasmosis. In: Kwon-Chung KJ, Bennett JE, editors. Medical mycology. Malvern: Lea & Febiger; 1992. p. 464–513.

    Google Scholar 

  16. Kwon-Chung KJ. Studies on Emmonsiella capsulata. I. Heterothallism and development of the ascocarp. Mycologia. 1973;65(1):109–21.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor JW. One fungus = one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus. 2011;2(2):113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Norvell LL. Fungal nomenclature. 1. Melbourne approves a new code. Mycotaxon. 2011;116:481–90.

    Article  Google Scholar 

  19. Borman AM, Johnson EM. Name changes for fungi of medical importance, 2018 to 2019. J Clin Microbiol. 2021;59(2):e01811.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Warnock DW. Name changes for fungi of medical importance, 2012 to 2015. J Clin Microbiol. 2017;55(1):53–9.

    Article  PubMed  Google Scholar 

  21. Warnock DW. Name changes for fungi of medical importance, 2016-2017. J Clin Microbiol. 2019;57(2):e01183.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lucking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, et al. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus. 2020;11:14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shin JH. Nucleic acid extraction techniques. In: Tang Y-W, Stratton CW, editors. Advanced techniques in diagnostic microbiology. New York: Springer; 2013. p. 209–25.

    Chapter  Google Scholar 

  24. Loeffler J, Hebart H, Bialek R, Hagmeyer L, Schmidt D, Serey FP, et al. Contaminations occurring in fungal PCR assays. J Clin Microbiol. 1999;37(4):1200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borst A, Box AT, Fluit AC. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur J Clin Microbiol Infect Dis. 2004;23(4):289–99.

    Article  CAS  PubMed  Google Scholar 

  26. Czurda S, Smelik S, Preuner-Stix S, Nogueira F, Lion T. Occurrence of fungal DNA contamination in PCR reagents: approaches to control and decontamination. J Clin Microbiol. 2016;54(1):148–52.

    Article  CAS  PubMed  Google Scholar 

  27. Romanelli AM, Fu J, Herrera ML, Wickes BL. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses. 2014;57(10):612–22.

    Article  CAS  PubMed  Google Scholar 

  28. Kang C-M, Chen X-J, Chih C-C, Hsu C-C, Chen P-H, Lee T-F, et al. Rapid identification of bloodstream bacterial and fungal pathogens and their antibiotic resistance determinants from positively flagged blood cultures using the BioFire FilmArray blood culture identification panel. J Microbiol Immunol Infect. 2020;53(6):882–91.

    Article  CAS  PubMed  Google Scholar 

  29. Ssebambulidde K, Bangdiwala AS, Kwizera R, Kandole TK, Tugume L, Kiggundu R, et al. Symptomatic cryptococcal antigenemia presenting as early cryptococcal meningitis with negative cerebral spinal fluid analysis. Clin Infect Dis. 2019;68(12):2094–8.

    Article  PubMed  Google Scholar 

  30. Leitner E, Hoenigl M, Wagner B, Krause R, Feierl G, Grisold AJ. Performance of the FilmArray blood culture identification panel in positive blood culture bottles and cerebrospinal fluid for the diagnosis of sepsis and meningitis. GMS Infect Dis. 2016;4:Doc06.

    PubMed  PubMed Central  Google Scholar 

  31. Poritz MA, Blaschke AJ, Byington CL, Meyers L, Nilsson K, Jones DE, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One. 2011;6(10):e26047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altun O, Almuhayawi M, Ullberg M, Ozenci V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol. 2013;51(12):4130–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leber AL, Everhart K, Balada-Llasat JM, Cullison J, Daly J, Holt S, et al. Multicenter evaluation of Biofire Filmarray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J Clin Microbiol. 2016;54(9):2251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clancy CJ, Pappas PG, Vazquez J, Judson MA, Kontoyiannis DP, Thompson GR 3rd, et al. Detecting infections rapidly and easily for Candidemia trial, part 2 (DIRECT2): a prospective, multicenter study of the T2Candida Panel. Clin Infect Dis. 2018;66(11):1678–86.

    Article  CAS  PubMed  Google Scholar 

  35. Lamoth F, Clancy CJ, Tissot F, Squires K, Eggimann P, Fluckiger U, et al. Performance of the T2Candida Panel for the diagnosis of intra-abdominal candidiasis. Open Forum Infect Dis. 2020;7(3):ofaa075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monday LM, Parraga Acosta T, Alangaden G. T2Candida for the diagnosis and management of invasive Candida infections. J Fungi (Basel). 2021;7(3):178.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sexton DJ, Bentz ML, Welsh RM, Litvintseva AP. Evaluation of a new T2 magnetic resonance assay for rapid detection of emergent fungal pathogen Candida auris on clinical skin swab samples. Mycoses. 2018;61(10):786–90.

    Article  CAS  PubMed  Google Scholar 

  39. Senchyna F, Hogan CA, Murugesan K, Moreno A, Ho DY, Subramanian A, et al. Clinical accuracy and impact of plasma cell-free DNA fungal PCR panel for non-invasive diagnosis of fungal infection. Clin Infect Dis. 2021;73:1677.

    Article  CAS  PubMed  Google Scholar 

  40. Cassagne C, Normand AC, L’Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016;59(11):678–90.

    Article  PubMed  Google Scholar 

  41. Patel R. A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J Fungi. 2019;5(1):4.

    Article  CAS  Google Scholar 

  42. Knoll MA, Ulmer H, Lass-Florl C. Rapid antifungal susceptibility testing of yeasts and molds by MALDI-TOF MS: a systematic review and meta-analysis. J Fungi (Basel). 2021;7(1):63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walsh TJ, McCarthy MW. The expanding use of matrix-assisted laser desorption/ionization-time of flight mass spectroscopy in the diagnosis of patients with mycotic diseases. Expert Rev Mol Diagn. 2019;19(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  44. Atkins CG, Buckley K, Blades MW, Turner RFB. Raman spectroscopy of blood and blood components. Appl Spectrosc. 2017;71(5):767–93.

    Article  CAS  PubMed  Google Scholar 

  45. Strycker BD, Han Z, Duan Z, Commer B, Wang K, Shaw BD, et al. Identification of toxic mold species through Raman spectroscopy of fungal conidia. PLoS One. 2020;15(11):e0242361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arend N, Pittner A, Ramoji A, Mondol AS, Dahms M, Ruger J, et al. Detection and differentiation of bacterial and fungal infection of neutrophils from peripheral blood using Raman spectroscopy. Anal Chem. 2020;92(15):10560–8.

    Article  CAS  PubMed  Google Scholar 

  47. Hu S, Gu F, Chen M, Wang C, Li J, Yang J, et al. A novel method for identifying and distinguishing Cryptococcus neoformans and Cryptococcus gattii by surface-enhanced Raman scattering using positively charged silver nanoparticles. Sci Rep. 2020;10(1):12480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Renishaw I. Raman spectroscopy. West Dundee 2021. https://www.renishaw.com/en/raman-spectroscopy%2D%2D6150.

  49. Bhat R. Potential use of Fourier transform infrared spectroscopy for identification of molds capable of producing mycotoxins. Int J Food Prop. 2011;16(8):1819–29.

    Article  Google Scholar 

  50. Heidrich D, Koehler A, Ramirez-Castrillon M, Pagani DM, Ferrao MF, Scroferneker ML, et al. Rapid classification of chromoblastomycosis agents genera by infrared spectroscopy and chemometrics supervised by sequencing of rDNA regions. Spectrochim Acta A Mol Biomol Spectrosc. 2021;254:119647.

    Article  CAS  PubMed  Google Scholar 

  51. Lam LMT, Dufresne PJ, Longtin J, Sedman J, Ismail AA. Reagent-free identification of clinical yeasts by use of attenuated total reflectance Fourier transform infrared spectroscopy. J Clin Microbiol. 2019;57(5):e01739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santos C, Fraga ME, Kozakiewicz Z, Lima N. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res Microbiol. 2010;161(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  53. Wolk DM, Kaleta EJ, Wysocki VH. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn. 2012;14(4):295–304.

    Article  CAS  PubMed  Google Scholar 

  54. Massire C, Buelow DR, Zhang SX, Lovari R, Matthews HE, Toleno DM, et al. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol. 2013;51(3):959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ozenci V, Patel R, Ullberg M, Stralin K. Demise of polymerase chain reaction/electrospray ionization-mass spectrometry as an infectious diseases diagnostic tool. Clin Infect Dis. 2018;66(3):452–5.

    Article  PubMed  Google Scholar 

  56. Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43(3):263–93.

    Article  CAS  PubMed  Google Scholar 

  57. McNicol AM, Farquharson MA. In situ hybridization and its diagnostic applications in pathology. J Pathol. 1997;182(3):250–61.

    Article  CAS  PubMed  Google Scholar 

  58. Strauss WM. PNA-FISH. In: Rautenstrauss BW, Liehr T, editors. FISH technology. Springer lab manuals. 1st ed. Berlin: Springer; 2002. p. 254–61.

    Google Scholar 

  59. Kubota K. CARD-FISH for environmental microorganisms: technical advancement and future applications. Microbes Environ. 2013;28(1):3–12.

    Article  PubMed  Google Scholar 

  60. Stoecker K, Dorninger C, Daims H, Wagner M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol. 2010;76(3):922–6.

    Article  CAS  PubMed  Google Scholar 

  61. Abdelhamed AM, Zhang SX, Watkins T, Morgan MA, Wu F, Buckner RJ, et al. Multicenter evaluation of Candida QuickFISH BC for identification of Candida species directly from blood culture bottles. J Clin Microbiol. 2015;53(5):1672–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Beard JS, Benson PM, Skillman L. Rapid diagnosis of coccidioidomycosis with a DNA probe to ribosomal RNA. Arch Dermatol. 1993;129(12):1589–93.

    Article  CAS  PubMed  Google Scholar 

  63. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bidartondo MI. Preserving accuracy in GenBank. Science. 2008;319(5870):1616.

    Article  CAS  PubMed  Google Scholar 

  65. Kidd SE, Chen SC, Meyer W, Halliday CL. A new age in molecular diagnostics for invasive fungal disease: are we ready? Front Microbiol. 2019;10:2903.

    Article  PubMed  Google Scholar 

  66. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289(1):150–4.

    Article  CAS  PubMed  Google Scholar 

  68. Tanner NA, Zhang Y, Evans TC Jr. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. BioTechniques. 2012;53(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  69. Silva Zatti M, Domingos Arantes T, Cordeiro TR. Isothermal nucleic acid amplification techniques for detection and identification of pathogenic fungi: a review. Mycoses. 2020;63(10):1006–20.

    Article  PubMed  Google Scholar 

  70. Fire A, Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci U S A. 1995;92(10):4641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–32.

    Article  CAS  PubMed  Google Scholar 

  72. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–2.

    Article  CAS  PubMed  Google Scholar 

  73. Widjojoatmodjo MN, Borst A, Schukkink RA, Box AT, Tacken NM, Van Gemen B, et al. Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J Microbiol Methods. 1999;38(1–2):81–90.

    Article  CAS  PubMed  Google Scholar 

  74. Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL. Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J Clin Microbiol. 2009;47(5):1325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brenier-Pinchart MP, Abaibou H, Berendsen T, Szymanski G, Beghri M, Bailly S, et al. Usefulness of pan-fungal NASBA test for surveillance of environmental fungal contamination in a protected hematology unit. Med Mycol. 2014;52(4):433–7.

    Article  PubMed  Google Scholar 

  76. Consortium OPATHY, Gabaldon T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev. 2019;43(5):517–47.

    Article  Google Scholar 

  77. Biswas C, Chen SC, Halliday C, Martinez E, Rockett RJ, Wang Q, et al. Whole genome sequencing of Candida glabrata for detection of markers of antifungal drug resistance. J Vis Exp. 2017;130:56714.

    Google Scholar 

  78. Hager CL, Ghannoum MA. The mycobiome: role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis. 2017;49(11):1171–6.

    Article  CAS  PubMed  Google Scholar 

  79. Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(5):e01250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Keum HL, Kim H, Kim HJ, Park T, Kim S, An S, et al. Structures of the skin microbiome and mycobiome depending on skin sensitivity. Microorganisms. 2020;8(7):1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis. 2018;92(3):210–3.

    Article  CAS  PubMed  Google Scholar 

  83. Armstrong AE, Rossoff J, Hollemon D, Hong DK, Muller WJ, Chaudhury S. Cell-free DNA next-generation sequencing successfully detects infectious pathogens in pediatric oncology and hematopoietic stem cell transplant patients at risk for invasive fungal disease. Pediatr Blood Cancer. 2019;66(7):e27734.

    Article  PubMed  Google Scholar 

  84. Litvintseva AP, Hurst S, Gade L, Frace MA, Hilsabeck R, Schupp JM, et al. Whole-genome analysis of Exserohilum rostratum from an outbreak of fungal meningitis and other infections. J Clin Microbiol. 2014;52(9):3216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Etienne KA, Roe CC, Smith RM, Vallabhaneni S, Duarte C, Escadon P, et al. Whole-genome sequencing to determine origin of multinational outbreak of Sarocladium kiliense bloodstream infections. Emerg Infect Dis. 2016;22(3):476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patrinos GP, Danielson PB, Ansorge WJ. Molecular diagnostics: past, present, and future. In: Patrinos GP, Danielson PB, Ansorge WJ, editors. Molecular diagnostics. 3rd ed. Amsterdam: Elsevier; 2017. p. 1–11.

    Google Scholar 

Further Reading

  • Falci DR, Stadnik CMB, Pasqualotto AC. A review of diagnostic methods for invasive fungal diseases: challenges and perspectives. Infect Dis Ther. 2017;6(2):213–23. PMID: 28357708. PMCID: PMC5446367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanan P, Wengenack NL, Theel ES. Laboratory diagnostics for fungal infections: a review of current and future diagnostic assays. Clin Chest Med. 2017;38(3):535–54. PMID: 28797494.

    Article  PubMed  Google Scholar 

  • Tsang CC, Teng JLL, Lau SKP, Woo PCY. Rapid genomic diagnosis of fungal infections in the age of next-generation sequencing. J Fungi (Basel). 2021;7(8):636. PMCID:PMC8398552. PMID:34436175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI148641 to BLW. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian L. Wickes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wickes, B.L. (2023). Diagnostic Molecular Mycology. In: Hospenthal, D.R., Rinaldi, M.G., Walsh, T.J. (eds) Diagnosis and Treatment of Fungal Infections. Springer, Cham. https://doi.org/10.1007/978-3-031-35803-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35803-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35802-9

  • Online ISBN: 978-3-031-35803-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics