Skip to main content

Blockchain-Based Infrastructure for Precision Agriculture

  • Chapter
  • First Online:
Integrating Blockchain and Artificial Intelligence for Industry 4.0 Innovations

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

  • 217 Accesses

Abstract

In agriculture, blockchain enables peer-to-peer transactions with extreme transparency and eliminates the need for a middleman or intermediary. Food attribution may be outlined using blockchain technology, in order to help the making of reliable food supply chains and the establishment of trust between producers and consumers. It encourages the adoption of data-driven technology in agriculture by offering a safe data storage system. In this chapter, we are aiming to discuss food supply chains, farming assurance, E-Agriculture, and farming resource transactions using blockchain technology in a theoretical and practical manner. We also confer the trials of monitoring farmer businesses and building a blockchain ecosystem for the food and agriculture industries. The Internet of Things (IoT), grid specimen, topographical information system (TIS), in-season decision-making, different current data collecting and analysis, and sensor technologies are all features of precision agriculture. The development of a comprehensive security system that supports the usage and administration of data is a critical aspect of constructing smart agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerson, J. P. (2018). Soil sampling guidelines. https://www.extension.purdue.edu/extmedia/AY/AY-368-w.pdf

  2. Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet of Things Journal, 5(6), 4890–4899.

    Article  Google Scholar 

  3. Fulton, J., Port, K., Lindsey, L., Shearer, S., Darr, M., & Luck, J. (2017). Digital agriculture tools to support soybean production: Final report to the united soybean board (5).

    Google Scholar 

  4. Hassan, S. H., Van Ginkel, S. W., Hussein, M. A., Abskharon, R., & Oh, S.-E. (2016). Toxicity assessment using different bioassays and microbial biosensors. Environment International, 92, 106–118.

    Article  Google Scholar 

  5. Intellias. (2022). 7 Ways how GIS in agriculture eliminates guesswork. https://intellias.com/gis-in-agriculture/

  6. Jasse, E. P., Bazzi, C. L., De Souza, E. G., Schenatto, K., & Agnoll, R. D. (2017). Plataforma Para Gerenciamen to De Dados Agrícolas. In Congresso Brasileiro De Engenharia Agrícola (Conbea). The importance of agricultural engineering for food security (pp. 1–6). ISBN 978-85-64681-13-2.

    Google Scholar 

  7. Kaddu, S., & Haumba, E. N. (2016). Promoting ICT based agricultural knowledge management for increased production by smallholder rural farmers in Uganda: A case of Communication and Information Technology for Agriculture and Rural Development (CITARD), Butaleja. In Proceedings of the 22nd Standing Conference of Eastern, Central and Southern Africa Library and Information Associations (SCECSAL XXII), Butaleja, 243–252.

    Google Scholar 

  8. Karar, M. E., Alotaibi, F., Al-Rasheed, A., & Reyad, O. (2020). A pilot study of smart agricultural irrigation using unmanned aerial vehicles and IoT-based cloud system. International Journal of Information Sciences Letters, 1–11. https://doi.org/10.18576/isl/100115

  9. Karar, M. E., Al-Rasheed, M., Al-Rasheed, A., & Reyad, O. (2020). IoT and neural network-based water pumping control system for smart irrigation. Information Sciences Letters, 9(2), 107–112.

    Article  Google Scholar 

  10. Kountios, G., Ragkos, A., Bournaris, T., Papadavid, G., & Michailidis, A. (2018). Educational needs and perceptions of the sustainability of precision agriculture: Survey evidence from Greece. Precision Agriculture, 19(3), 537–554.

    Article  Google Scholar 

  11. Lesser, A. (2018). Big data and big agriculture. Technical Report Analyst. https://gigaom.com/report/big-data-and-big-agriculture/. Last accessed November 23, 2018.

  12. Lin, Y. P., Petway, J., Anthony, J., Mukhtar, H., Liao, S. W., Chou, C. F., & Ho, Y. F. (2017). Blockchain: The evolutionary next step for ICT E-agriculture. Environments, 4(3), 50.

    Article  Google Scholar 

  13. Lukowska, A., Tomaszuk, P., Dzierzek, K., & Magnuszewski, L. (2019). Soil sampling mobile platform for Agriculture 4.0. In 2019 20th International Carpathian Control Conference (ICCC) (pp. 1–4). IEEE. https://doi.org/10.1109/CarpathianCC.2019.8765937

    Chapter  Google Scholar 

  14. Moreira, W. K. O. (2019). Computational module for delineating limestone application maps from soil chemical attributes.

    Google Scholar 

  15. Nicoleta, T., Stavros, S., & Manos, R. (2019). Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of Agricultural & Food Information, 20(4), 344–380. https://doi.org/10.1080/10496505.2019.1638264

    Article  Google Scholar 

  16. Preethi, K. (2017). Blockchains don’t scale. Not today, at least. But there’s hope [Online]. Available: https://hackernoon.com/blockchainsdont-scale-nottoday-at-least-but-there-s-hope-2cb43946551a. Accessed May 18, 2019.

  17. Sam, M. (2018). Blockchain in agriculture: 10 possible use cases [Online]. Available: https://www.disruptordaily.com/blockchain-use-casesagriculture/. Accessed May 18, 2019.

  18. Sharma, P. K., Chen, M. Y., & Park, J. H. (2017). A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE Access, 6, 115–124.

    Article  Google Scholar 

  19. Swindoll, C., & Ag Leader precision agronomist. (2018). The rise of decision agriculture. https://www.futurefarming.com/smart-farming/tools-data/the-rise-of-decision-agriculture

  20. Velayutham, Y., Abu Bakar, N. A., Hassan, N. H., & Samy, G. N. (2021). IoT security for smart grid environment: Issues and solutions. Jordanian Journal of Computers and Information Technology, 7(1), 13–24.

    Google Scholar 

  21. Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G., & Moreno, J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273–290. https://doi.org/10.1016/j.isprsjprs.2015.05.005

    Article  Google Scholar 

  22. Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., & Hawkesford, M. J. (2016). Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1), 143–153.

    Article  Google Scholar 

  23. Wachowiak, M., Walters, D., Kovacs, J., Wachowiak-Smolkov, R., & James, A. (2017). Visual analytics and remote sensing imagery to support community based research for precision agriculture in emerging areas. Computers and Electronics in Agriculture, 143, 149–164. https://doi.org/10.1016/j.compag.2017.09.035

    Article  Google Scholar 

  24. Wahabzada, M., Paulus, S., Kersting, K., & Mahlein, A.-K. (2015). Automated interpretation of 3D laser scanned point clouds for plant organ segmentation. BMC Bioinformatics, 16(1), 248.

    Article  Google Scholar 

  25. Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences of the United States of America, 114, 6148–6150. https://doi.org/10.1073/pnas.1707462114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Packialatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Packialatha, A., Vijitha, S., Sangeetha, A., Seetha Lakshmi, K. (2024). Blockchain-Based Infrastructure for Precision Agriculture. In: Goundar, S., Anandan, R. (eds) Integrating Blockchain and Artificial Intelligence for Industry 4.0 Innovations. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-35751-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35751-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35750-3

  • Online ISBN: 978-3-031-35751-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics