Skip to main content

A Framework for Low Energy Application Devices Using Blockchain-Enabled IoT in WSNs

  • Chapter
  • First Online:
Integrating Blockchain and Artificial Intelligence for Industry 4.0 Innovations

Abstract

The Low Rate Wireless Personal Area Network (LR-WPAN) is adopted for various purposes in the Internet of Things (IoT), where the systems need to be integrated to improve connectivity, productivity, and overall geographic distribution. The implementation of Low Power Wide Area Networks (LPWAN) across recorded wavelengths with Narrowband IoT (NB-IoT) is for extending the development of Long-Term Evolution (LTE). The Long-Term Evolution of Machines (LTE-M) is a formalized technique to form a 5G communication in the organization. It provides a hybrid network development technology that efficiently links various connections to the same piece of equipment. Another example is the combination of a previous IEEE 802.15.4 infrastructure using NB-IoT. The work examines aspects underlying the development of various embedded broadcasters rather than their operation. Moreover, the Dynamic Link Selection (DLS) mechanism group descriptors are proposed to continually check the connection performance. Comprehensive calculations show that the use of the DLS method greatly improves the battery consumption on both terminals and has the highest resource requirements of the system. With sensor networks more prone to attacks, blockchain-based WSN (BWSN) is proposed to improve security and trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaiswal, K., & Anand, V. (2021). A survey on IoT-based healthcare system: Potential applications, issues, and challenges. In Advances in biomedical engineering and technology (pp. 459–471). Springer.

    Chapter  Google Scholar 

  2. Landaluce, H., Arjona, L., Perales, A., Falcone, F., Angulo, I., & Muralter, F. (2020). A review of IoT sensing applications and challenges using RFID and wireless sensor networks. Sensors, 20(9), 2495.

    Article  Google Scholar 

  3. Ghazal, T. M., Hasan, M. K., Alshurideh, M. T., Alzoubi, H. M., Ahmad, M., Akbar, S. S., Al Kurdi, B., & Akour, I. A. (2021). IoT for smart cities: Machine learning approaches in smart healthcare—A review. Future Internet, 13(8), 218.

    Article  Google Scholar 

  4. Gulati, K., Boddu, R. S., Kapila, D., Bangalore, S. L., Chandnani, N., & Saravanan, G. (2021). A review paper on wireless sensor network techniques in the Internet of Things (IoT). Materials Today: Proceedings, 51, 161–165.

    Google Scholar 

  5. Ezhilarasi, T. P., Dilip, G., Latchoumi, T. P., & Balamurugan, K. (2020). UIP—A smart web application to manage network environments. In Proceedings of the third international conference on computational intelligence and informatics (pp. 97–108). Springer.

    Google Scholar 

  6. Menon, P. C., Rani, B. K., Kumar, K., & Gupta, V. (2021). An effective OS–DPLL design for reducing power dissipation in an IoT application. Journal of Ambient Intelligence and Humanized Computing, 1–9. https://doi.org/10.1007/s12652-021-03016-z

  7. Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113.

    Article  Google Scholar 

  8. Hajjaji, Y., Boulila, W., Farah, I. R., Romdhani, I., & Hussain, A. (2021). Big data and IoT-based applications in smart environments: A systematic review. Computer Science Review, 39, 100318.

    Article  Google Scholar 

  9. Sun, W., Tang, M., Zhang, L., Huo, Z., & Shu, L. (2020). A survey of using swarm intelligence algorithms in IoT. Sensors, 20(5), 1420.

    Article  Google Scholar 

  10. Kris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of wireless sensor networks: An up-to-date survey. Applied System Innovation, 3(1), 14.

    Article  Google Scholar 

  11. Chéour, R., Khriji, S., Götz, M., Abid, M., & Kanoun, O. (2020). Accurate dynamic voltage and frequency scaling measurement for low-power microcontrollers in wireless sensor networks. Microelectronics Journal, 105, 104874.

    Article  Google Scholar 

  12. Baraneetharan, E. (2020). Role of machine learning algorithms intrusion detection in WSNs: A survey. Journal of Information Technology, 2(03), 161–173.

    Google Scholar 

  13. Petrol, R., Loscrí, V., & Mitton, N. (2014). Towards a smart city based on cloud of things. In Proceedings of the 2014 ACM international workshop on Wireless and mobile technologies for smart cities – WiMobCity ’14 (pp. 61–66). ACM Press. https://doi.org/10.1145/2633661.2633667

    Chapter  Google Scholar 

  14. Dempster, A. P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B, 30, 205–247.

    MathSciNet  MATH  Google Scholar 

  15. Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press.

    Book  MATH  Google Scholar 

  16. Ali, T., Dutta, P., & Boruah, H. (2012). A new combination rule for conflict problem of Dempster-Shafer evidence theory. International Journal of Energy, Information and Communications, 3, 35–40.

    Google Scholar 

  17. Yoon, S., Ryu, C., & Suh, D. H. (2014). A novel way of BPA calculation for context inference using sensor signals. International Journal of Smart Home, 8, 1–8. https://doi.org/10.14257/ijsh.2014.8.1.01

    Article  Google Scholar 

  18. Sekaran, K., Rajakumar, R., Dinesh, K., Rajkumar, Y., Latchoumi, T. P., Kadry, S., & Lim, S. (2020). An energy-efficient cluster head selection in wireless sensor network using a grey wolf optimization algorithm. Telkomnika, 18(6), 2822–2833.

    Article  Google Scholar 

  19. Latchoumi, T. P., & Parthiban, L. (2022). Quasi oppositional dragonfly algorithm for load balancing in a cloud computing environment. Wireless Personal Communications, 122(3), 2639–2656.

    Article  Google Scholar 

  20. Gupta, V. (2017). A brief history of blockchain. https://hbr.org/2017/02/a-brief-history-of-blockchain. Accessed May 4, 2021.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latchoumi, T.P., Parthiban, L., Balamurugan, K., Raja, K., Vijayaraj, J., Parthiban, R. (2024). A Framework for Low Energy Application Devices Using Blockchain-Enabled IoT in WSNs. In: Goundar, S., Anandan, R. (eds) Integrating Blockchain and Artificial Intelligence for Industry 4.0 Innovations. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-35751-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35751-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35750-3

  • Online ISBN: 978-3-031-35751-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics