Skip to main content

Blockchain-Based Privacy-Preserving Electronics Healthcare Records in Healthcare 4.0 Using Proxy Re-Encryption

  • Chapter
  • First Online:
Integrating Blockchain and Artificial Intelligence for Industry 4.0 Innovations

Abstract

Sharing patient data across health organizations is currently not secure, and doing so without mutual trust may result in data privacy violations. Through the implementation of Industry 4.0 principles, the whole ecosystem is advancing toward Healthcare 4.0. Periodic medical data sensing, aggregation, data transfer, data sharing, and data storage were the core components of Healthcare 4.0. The blockchain provides trust in the flow of patient medical information between health institutions. In this research, a permissioned blockchain network based on the Hyperledger Fabric architecture is built among patients and medical institutions to achieve secure and trustworthy data exchange for patients. Using the Hyperledger Fabric framework, blockchain can effectively handle electronic health records by combining the customized access-control method with asymmetric cryptography to remove inconsistency in data interchange. This work provides the results with different chaincodes and assesses Fabric’s performance as the number of chaincodes and peers grow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh, T., & Miaoulis, W. (2014). Privacy and security audits of electronic health information. Journal of AHIMA, 85(3), 54–59.

    Google Scholar 

  2. Greenhalgh, T., Hinder, S., Stramer, K., Bratan, T., & Russell, J. (2010). Adoption, non-adoption, and abandonment of a personal electronic health record: A case study of Health Space. BMJ, 341, c5814.

    Article  Google Scholar 

  3. Van der Linden, H., Kalra, D., Hasman, A., & Talmon, J. (2009). Inter organizational future proof EHR systems: A review of the security and privacy related issues. International Journal of Medical Informatics, 78(3), 141–160.

    Article  Google Scholar 

  4. Nakamoto, S. (2008, Dec). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf

  5. Hyperledger Fabric. (2017). Hyperledger Fabric. https://www.hyperledger.org/ projects/fabric

  6. Linux Foundation. (2017). Linux Foundation Hyperledger project. https://www.hyperledger.org/

  7. Ateniese, G., Fu, K., Green, M., & Hohenberger, S. (2006). Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Transactions on Information and System Security (TISSEC), 9(1), 1–30.

    Article  MATH  Google Scholar 

  8. Chen, L., Lee, W. K., Chang, C., Choo, K. K., & Zhang, N. (2019). Blockchain based searchable encryption for electronic health record sharing. Future Generation Computer Systems, 95, 420–429.

    Article  Google Scholar 

  9. Akpan, N. (2016). Has health care hacking become an epidemic? [Online]. Available: https://www.pbs.org/newshour/science/has-health-care-hacking-become-an-epidemic

  10. U.S. Department of Health. (2017). Breaches affecting 500 or more individuals [Online]. Available: https://www.hhs.gov/hipaa/for-professionals/breach-notification/breach-reporting/index.html

  11. Smart, W. (2018). Lessons learned review of the WannaCry Ransomware Cyber Attack. [Online]. Available: https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacryransomware-cyber-attack-cio-review.pdf

  12. Morse, A. (2018). Investigation: WannaCry cyber-attack and the NHS [Online]. Available: https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS. pdf

  13. Amofa, S., Sifah, E. B., Agyekum, K. O., Abla, S., Xia, Q., Gee, J. C., & Gao, J. B. (2018). A blockchain-based architecture framework for secure sharing of personal health data. 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom). Ostrava.

    Book  Google Scholar 

  14. Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing privacy: using blockchain to protect personal data. 2015 IEEE security and privacy workshops, San Jose, USA, pp. 180–184.

    Google Scholar 

  15. Zheng, X., Mukkamala, R. R., Vatrapu, R., & Ordieres-Mere, J. (2018). Blockchain-based personal health data sharing system using cloud storage. 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom). Ostrava.

    Book  Google Scholar 

  16. Ekblaw, A., Azaria, A., Halamka, J. D., & Lippman, A. (2016). A case study for blockchain in Healthcare: "MedRec" prototype for electronic health records and medical research data. The 2016 IEEE of international conference on open and Big Data, Iscataway, USA, pp. 25–30.

    Google Scholar 

  17. Mikula, T., & Jacobsen, R. H. (2018). Identity and access management with blockchain in electronic healthcare records. 2018 21st Euromicro conference on digital system design (DSD). Prague, pp. 699–706.

    Book  Google Scholar 

  18. Xue, T. F., Fu, Q. C., Wang, C., & Wang, X. Y. (2017). A medical data sharing model via blockchain. Acta Automatica Sinica, 43(9), 1555–1562.

    Google Scholar 

  19. Cao, S., Zhang, G. X., Liu, P. F., Zhang, X. S., & Neri, F. (2019). Cloudassisted secure eHealth systems for tamper-proofing EHR via blockchain. Information Sciences, 485, 427–440.

    Article  Google Scholar 

  20. Xia, Q., Sifah, E. B., Asamoah, K. O., Gao, J., Du, X. J., & Guizani, M. (2017). MeDShare: Trustless medical data sharing among cloud service providers via blockchain. IEEE Access, 5, 14757–14767.

    Article  Google Scholar 

  21. Guo, R., Shi, H., Zhao, Q., & Zheng, D. (2018). Secure attribute-based signature scheme with multiple authorities for Blockchain in electronic health records systems. IEEE Access, 6, 11676–11686.

    Article  Google Scholar 

  22. Xia, Q., Sifah, E. B., Smahi, A., Amofa, S., & Zhang, X. S. (2017). BBDS:Blockchainbased data sharing for electronic medical records in cloud environments. Information, 8(44), 1–16.

    Google Scholar 

  23. Yuan, Y., & Wang, F. Y. (2016). Blockchain: The state of the art and future trends. Acta Automatica Sinica, 42(4), 481–494.

    Google Scholar 

  24. Sousa, J., Bessani, A., & Vukolic, M. (2018., no. Section 4). A byzantine Fault-Tolerant ordering service for the hyperledger fabric blockchain platform. In Proceedings - 48th annual IEEE/IFIP international conference on dependable systems and networks, DSN 2018 (pp. 51–58).

    Google Scholar 

  25. Liu, J., Li, X., Ye, L., Zhang, H., Du, X., & Guizani, M. (2018). BPDS: A blockchain based privacy-preserving data sharing for electronic medical records. 2018 IEEE global communications conference (GLOBECOM). Abu Dhabi, United Arab Emirates.

    Google Scholar 

  26. Chen, Y., Ding, S., Zheng, X., Zheng, H. D., & Yang, S. L. (2019). Blockchain based medical records secure storage and medical service framework. Journal of Medical Systems. https://doi.org/10.1007/s10916-018-1121-4

  27. Chen, L. X., Lee, W. K., Chang, C. C., Choo, K. R., & Zhang, N. (2019). Blockchain based searchable encryption for electronic health record sharing. Future Generation Computer Systems, 95, 420–429.

    Article  Google Scholar 

  28. Shen, B., Guo, J., & Yang, Y. (2019). MedChain: Efficient healthcare data sharing via blockchain. Applied Sciences, 9(6), 1207.

    Article  Google Scholar 

  29. Androulaki, E., et al. (2018). Hyperledger Fabric: A distributed operating system for permissioned blockchains

    Google Scholar 

  30. Huawei Technologies. (2017). Caliper: A Blockchain benchmark framework. https://github.com/Huawei-OSG/caliper/

  31. Level DB. (2018). Level DB database. http://leveldb.org/

  32. Couch DB. (2018). Couch DB database. http://couchdb.apache.org/

  33. Rodrigues, J. P. C., Torre, I. D. L., Fernandez, G., & Coronado, M. L. (2013). Analysis of the security and privacy requirements of cloud-based electronic health records systems. Journal of Medical Internet Research, 15(8), 418–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Parthiban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parthiban, L., Sammeta, N., Malathi, A.C.J., Samuel, B.E. (2024). Blockchain-Based Privacy-Preserving Electronics Healthcare Records in Healthcare 4.0 Using Proxy Re-Encryption. In: Goundar, S., Anandan, R. (eds) Integrating Blockchain and Artificial Intelligence for Industry 4.0 Innovations. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-35751-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35751-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35750-3

  • Online ISBN: 978-3-031-35751-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics