Skip to main content

Dispersion on Certain Cartesian Products of Graphs

  • Conference paper
  • First Online:
Control and Inverse Problems (CIP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 150 Accesses

Abstract

In this short note, we prove a sharp dispersive estimate \(\|\mathrm {e}^{\mathrm {i} tH} f\|{ }_\infty < t^{-d/3}\|f\|{ }_1\) for any Cartesian product \(\mathbb {Z}^d \mathop {\square } G_F\) of the integer lattice and a finite graph. This includes the infinite ladder, k-strips, and infinite cylinders, which can be endowed with certain potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [2], the unitary operator is instead \((\widetilde {U}\psi )_\theta (v_n)=\mathrm {e}^{-2\pi \mathrm {i}\theta \cdot v_n}(U\psi )_\theta (v_n)\), so the fiber operator obtained there is \(\widetilde {H}(\theta ) = \mathrm {e}^{-2\pi \mathrm {i}\theta \cdot }H(\theta )\mathrm {e}^{2\pi \mathrm {i}\theta \cdot }\), where \(\mathrm {e}^{\pm 2\pi \mathrm {i}\theta \cdot }f(v_p)=\mathrm {e}^{2\pi \mathrm {i}\theta \cdot v_p}f(v_p)\). This operator and ours are thus unitarily equivalent; the present version is just more suitable for our computations.

References

  1. K. Ammari, M. Sabri, Dispersion for Schrödinger operators on regular trees. Anal. Math. Phys. 12, article number: 56 (2022)

    Google Scholar 

  2. A. Boutet de Monvel, M. Sabri, Ballistic transport in periodic and random media, arXiv:2202.00940. To appear in Operator Theory Advances and Applications

    Google Scholar 

  3. A.J. Eddine, Schrödinger equation on homogeneous trees. J. Lie Theory 23, 779–794 (2013)

    MathSciNet  MATH  Google Scholar 

  4. I. Egorova, E. Kopylova, G. Teschl, Dispersion estimates for one-dimensional discrete Schrödinger and wave equations. J. Spectr. Theory 5, 663–696 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. L.I. Ignat, D. Stan, Dispersive properties for discrete Schrödinger equations. J. Fourier Anal. Appl., 17, 1035–1065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Korotyaev, N. Saburova, Schrödinger operators on periodic discrete graphs. J. Math. Anal. Appl. 420, 576–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Mckenzie, M. Sabri, Quantum ergodicity for periodic graphs, arXiv:2208.12685

    Google Scholar 

  8. Y. Mi, Z. Zhao, Dispersive estimate for two-periodic discrete one-dimensional Schrödinger operator. J. Math. Anal. Appl. 485(1), 123768 (2020)

    Google Scholar 

  9. Y. Mi, Z. Zhao, Dispersive estimates for periodic discrete one-dimensional Schrödinger operators. Proc. Am. Math. Soc. 150, 267–277 (2022)

    Article  MATH  Google Scholar 

  10. L.J. Landau, Bessel functions: monotonicity and bounds. J. London Math. Soc. 61, 197–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Reed, B. Simon, Methods of modern mathematical physics, in Analysis of Operators, vol. 4 (Academic Press, New York, 1978)

    MATH  Google Scholar 

  12. A.G. Setti, \(L^p\) and operator norm estimates for the complex time heat operator on homogeneous trees. Trans. Am. Math. Soc. 350, 743–768 (1998)

    Google Scholar 

  13. A. Stefanov, P.G. Kevrekidis, Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations. Nonlinearity 18, 1841–1857 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Teschl, Mathematical methods in quantum mechanics: with applications to Schrödinger Operators, 2nd edn. GTM 157 (AMS, New York, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Sabri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ammari, K., Sabri, M. (2023). Dispersion on Certain Cartesian Products of Graphs. In: Ammari, K., Jammazi, C., Triki, F. (eds) Control and Inverse Problems. CIP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-35675-9_11

Download citation

Publish with us

Policies and ethics