Skip to main content

Few-Shot Learning for Plant Disease Classification Using ILP

  • 124 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1781)


Plant diseases are one of the main causes of crop loss in agriculture. Machine Learning, in particular statistical and neural nets (NNs) approaches, have been used to help farmers identify plant diseases. However, since new diseases continue to appear in agriculture due to climate change and other factors, we need more data-efficient approaches to identify and classify new diseases as early as possible. Even though statistical machine learning approaches and neural nets have demonstrated state-of-the-art results on many classification tasks, they usually require a large amount of training data. This may not be available for emergent plant diseases. So, data-efficient approaches are essential for an early and precise diagnosis of new plant diseases and necessary to prevent the disease’s spread. This study explores a data-efficient Inductive Logic Programming (ILP) approach for plant disease classification. We compare some ILP algorithms (including our new implementation, PyGol) with several statistical and neural-net based machine learning algorithms on the task of tomato plant disease classification with varying sizes of training data set (6, 10, 50 and 100 training images per disease class). The results suggest that ILP outperforms other learning algorithms and this is more evident when fewer training data are available.


  • Few-shot Learning
  • Data Efficient Machine Learning
  • ILP
  • Inverse Entailment
  • Plant Disease Classification

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

    Available from:


  1. Machine Learning. McGraw Hill (1997)

    Google Scholar 

  2. Algorithmia’: 2020 state of enterprise machine learning.

  3. Argüeso, D., et al.: Few-shot learning approach for plant disease classification using images taken in the field. Comput. Electron. Agric. 175, 105542 (2020)

    CrossRef  Google Scholar 

  4. Armi, L., Fekri-Ershad, S.: Texture image analysis and texture classification methods - a review (2019).

  5. Babapour Mofrad, F., Valizadeh, G.: A comprehensive survey on two and three-dimensional Fourier shape descriptors: biomedical applications. Arch. Comput. Methods Eng. 29(7), 4643–4681 (2022)

    CrossRef  MathSciNet  Google Scholar 

  6. Brian Hudelson, U.: Early blight.

  7. Chen, L., Cui, X., Li, W.: Meta-learning for few-shot plant disease detection. Foods 10, 2441 (2021).

    CrossRef  Google Scholar 

  8. Chen, Z., et al.: Plant disease recognition model based on improved yolov5. Agronomy 12(2), 365 (2022)

    CrossRef  MathSciNet  Google Scholar 

  9. Cropper, A.: Metgol - an ILP system based on meta-iterpretive learning (2016).

  10. Dai, W.Z., Muggleton, S., Wen, J., Tamaddoni-Nezhad, A., Zhou, Z.H.: Logical vision: one-shot meta-interpretive learning from real images. In: ILP (2017)

    Google Scholar 

  11. Davis, R., Miyao, G., Subbarao, K., Stapleton, J., Aegerter, B.: Tomato yellow leaf curl.

  12. Fink, M.: Object classification from a single example utilizing class relevance metrics. In: Advances in Neural Information Processing Systems, vol. 17 (2004)

    Google Scholar 

  13. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)

  14. Garden, M.B.: Septoria leaf spot of tomato.

  15. Gevens, A., Seidl, A., Brian Hudelson, U.: Late blight.

  16. GmbH, P.: Plantix : a mobile crop advisory app for farmers, extension workers and gardeners (2015).

  17. Harakannanavar, S.S., Rudagi, J.M., Puranikmath, V.I., Siddiqua, A., Pramodhini, R.: Plant leaf disease detection using computer vision and machine learning algorithms. Glob. Trans. Proc. 3(1), 305–310 (2022)

    CrossRef  Google Scholar 

  18. Hinek, J.P.: How long does it take to build an ml model?.

  19. Hong, T.C.K., Economou, A.: What shape grammars do that cad should: the 14 cases of shape embedding. Artif. Intell. Eng. Des. Anal. Manuf. 36, e4 (2022).

    CrossRef  Google Scholar 

  20. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    CrossRef  MATH  Google Scholar 

  21. Huang, H.P., Puvvada, K.C., Sun, M., Wang, C.: Unsupervised and semi-supervised few-shot acoustic event classification. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 331–335. IEEE (2021)

    Google Scholar 

  22. Huang, Z., Leng, J.: Analysis of Hu’s moment invariants on image scaling and rotation, vol. 7, pp. V7–476 (2010)

    Google Scholar 

  23. Hughes, D.P., Salathe, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics (2015)

    Google Scholar 

  24. Iseli, M.: Mosaic virus - is my plant infected? identification & treatment.

  25. Joshi, K., Awale, R., Ahmad, S., Patil, S., Pisal, V.: Plant leaf disease detection using computer vision techniques and machine learnings. In: ITM Web of Conferences (2022)

    Google Scholar 

  26. KSaradhambal, G., D.R.L.S.R.R.: Plant disease detection and its solution using image classification. Int. J. Pure Appl. Math. 119 (2018).

  27. Lake, B., Salakhutdinov, R., Tenenbaum, J.: One-shot learning by inverting a compositional causal process. In: Advances in Neural Information Processing Systems (2013), 27th Annual Conference on Neural Information Processing Systems, NIPS 2013, 05–10-December-2013 (2013)

    Google Scholar 

  28. Li, Y., Chao, X.: Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 17, 1–10 (2021)

    CrossRef  Google Scholar 

  29. Li Fe-Fei, Fergus, Perona: A bayesian approach to unsupervised one-shot learning of object categories. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1134–1141 (2003)

    Google Scholar 

  30. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    CrossRef  Google Scholar 

  31. Lu, J., Ehsani, R., Shi, Y., De Castro, A., Wang, S.: Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Sci. Rep. 8, 2793 (2018)

    CrossRef  Google Scholar 

  32. Lu, J., Zhou, M., Gao, Y., Jiang, H.: Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis. Agric. 19, 1–16 (2018)

    CrossRef  Google Scholar 

  33. McAvoy, G.: Take the right aim to tame target spot of tomato.

  34. Michelle Marks, U.: Bacterial spot of tomato.

  35. Mohanty, S.: Plantvillage-dataset.

  36. Muggleton, S., Dai, W.Z., Sammut, C., Tamaddoni-Nezhad, A.: Meta-interpretive learning from noisy images. Mach. Learn. 107, 1097–1118 (2018)

    CrossRef  MathSciNet  MATH  Google Scholar 

  37. Muggleton, S., de Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19–20, 629–679 (1994). Special Issue: Ten Years of Logic Programming

    Google Scholar 

  38. Muggleton, S., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100, 49–73 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  39. Müller, T., Pérez-Torró, G., Basile, A., Franco-Salvador, M.: Active few-shot learning with fasl. arXiv preprint arXiv:2204.09347 (2022)

  40. Narwade Manoorkar, J., Kumar, D.B.: Local and Global Color Histogram Feature for Color Content-Based Image Retrieval System, pp. 293–300 (2016)

    Google Scholar 

  41. Ökten, İ, Yüzgeç, U.: Rice plant disease detection using image processing and probabilistic neural network. In: Seyman, M.N. (ed.) Electrical and Computer Engineering, pp. 82–94. Springer International Publishing, Cham (2022).

    CrossRef  Google Scholar 

  42. Qi, A., Gryaditskaya, Y., Xiang, T., Song, Y.Z.: One sketch for all: one-shot personalized sketch segmentation. IEEE Trans. Image Process. 31, 2673–2682 (2022)

    CrossRef  Google Scholar 

  43. Radovanović, D., Ukanovic, S.: Image-based plant disease detection: a comparison of deep learning and classical machine learning algorithms. In: 2020 24th International Conference on Information Technology (IT), pp. 1–4 (2020)

    Google Scholar 

  44. Reganold, J.P., Papendick, R.I., Parr, J.F.: Sustainable agriculture. Sci. Am. 262(6), 112–121 (1990)

    CrossRef  Google Scholar 

  45. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)

  46. RHS: Tomato leaf mould.

  47. Sharma, P., Berwal, Y., Ghai, W.: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Inf. Process. Agric. 7, 566–574 (2019)

    Google Scholar 

  48. Spengler, T.: What are two-spotted spider mites - two-spotted mite damage and control insects.

  49. Srinivasan, A.: A learning engine for proposing hypotheses (aleph) (2001).

  50. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. CoRR (2019)

    Google Scholar 

  51. Tamaddoni-Nezhad, A.: Metagol_nt.

  52. Tekol, Y., contributors: PySwip v0.2.10 (2020).

  53. Türkoğlu, M., Yanikoglu, B., Hanbay, D.: Plantdiseasenet: convolutional neural network ensemble for plant disease and pest detection. Signal Image Video Process. 16(2), 301–309 (2022)

    CrossRef  Google Scholar 

  54. Varghese, D.: Metagol_nt.

  55. Varghese, D., Bauer, R., Baxter-Beard, D., Muggleton, S., Tamaddoni-Nezhad, A.: Human-like rule learning from images using one-shot hypothesis derivation. In: Katzouris, N., Artikis, A. (eds.) Inductive Logic Programming, pp. 234–250. Springer, Cham (2022).

    CrossRef  Google Scholar 

  56. Varghese, D., Tamaddoni-Nezhad, A.: One-shot rule learning for challenging character recognition. In: Proceedings of the 14th International Rule Challenge, Oslo, Norway, vol. 2644, pp. 10–27 (2020)

    Google Scholar 

  57. Varghese, D., Tamaddoni-Nezhad, A.: Pyilp (2022).

  58. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53(3), 1–34 (2020)

    CrossRef  Google Scholar 

  59. Ying, Z.: Weakly-supervised diagnosis with attention models (2022)

    Google Scholar 

  60. Yu, Z., Chen, L., Cheng, Z., Luo, J.: Transmatch: a transfer-learning scheme for semi-supervised few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12856–12864 (2020)

    Google Scholar 

  61. Zhu, P., Zhu, Z., Wang, Y., Zhang, J., Zhao, S.: Multi-granularity episodic contrastive learning for few-shot learning. Pattern Recognit. 131, 108820 (2022)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dany Varghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varghese, D., Patel, U., Krause, P., Tamaddoni-Nezhad, A. (2023). Few-Shot Learning for Plant Disease Classification Using ILP. In: Garg, D., Narayana, V.A., Suganthan, P.N., Anguera, J., Koppula, V.K., Gupta, S.K. (eds) Advanced Computing. IACC 2022. Communications in Computer and Information Science, vol 1781. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35640-7

  • Online ISBN: 978-3-031-35641-4

  • eBook Packages: Computer ScienceComputer Science (R0)