Skip to main content

A Participatory Design Approach to Develop a VR-Based Electrocardiogram Training Simulator

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14027))

Included in the following conference series:

Abstract

Virtual Reality (VR) allows complete immersion in virtual environments. VR is used in many applications including training healthcare professionals in a time and cost effective manner. Effectively incorporating clinical feedback into simulation design to ensure usability of the software is a challenge. In this paper, a discussion of a pipeline which was developed to allow for efficient participatory design for the creation of a VR-based electrocardiogram training simulator. Further, the results from the usability, content validity, and face validity which was conducted to assess the ECG simulator is presented. The results indicate that the proposed approach can be used to create and assess other VR-based medical training simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LaViola, J.J.: Bringing VR and spatial 3D interaction to the masses through video games. IEEE Comput. Graph. Appl. 28(5), 10–15 (2008). https://doi.org/10.1109/MCG.2008.92

    Article  Google Scholar 

  2. Slavova, Y., Mu, M.: A comparative study of the learning outcomes and experience of VR in education. In: 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018 - Proceedings, pp. 685–686, August 2018. https://doi.org/10.1109/VR.2018.8446486

  3. Freina, L., Ott, M.: A literature review on immersive virtual reality in education: state of the art and perspectives. http://www.google.com/patents/US3050870. Accessed 02 Feb 2023

  4. Claudia, M., Dieck, T., Jung, T.: Progress in IS Augmented Reality and Virtual Reality The Power of AR and VR for Business. http://www.springer.com/series/10440. Accessed 02 Feb 2023

  5. Lee, L., Nisar, H., Roberts, J., Blackford, J., Kesavadas, T.K.: Face and content validation of food safety training in Virtual Reality (VR). In: SeGAH 2022 - 2022 IEEE 10th International Conference on Serious Games and Applications for Health (2022). https://doi.org/10.1109/SEGAH54908.2022.9978588

  6. Ong, C.S., et al.: Role of virtual reality in congenital heart disease. Congenit. Heart Dis. 13(3), 357–361 (2018). https://doi.org/10.1111/CHD.12587

    Article  Google Scholar 

  7. Sadeghi, A.H., et al.: Immersive 3D virtual reality imaging in planning minimally invasive and complex adult cardiac surgery. Eur. Heart J. Digit. Health 1(1), 62–70 (2020). https://doi.org/10.1093/EHJDH/ZTAA011

    Article  Google Scholar 

  8. Lewis, G.N., Rosie, J.A.: Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil. Rehabil. 34(22), 1880–1886 (2012). https://doi.org/10.3109/09638288.2012.670036

    Article  Google Scholar 

  9. Steiner, B., Elgert, L., Saalfeld, B., Wolf, K.H.: Gamification in rehabilitation of patients with musculoskeletal diseases of the shoulder: scoping review. JMIR Serious Games 8(3), e19914 (2020). https://games.jmir.org/2020/3/e19914, https://doi.org/10.2196/19914

  10. Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017(11) (2017)

    Google Scholar 

  11. Jack, D., et al.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 308–318 (2001). https://doi.org/10.1109/7333.948460

    Article  MathSciNet  Google Scholar 

  12. Laver, K., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Stroke 43(2) (2012). https://doi.org/10.1161/STROKEAHA.111.642439

  13. Izard, S.G., et al.: Virtual reality as an educational and training tool for medicine. J. Med. Syst. 42(3), 1–5 (2018). https://doi.org/10.1007/S10916-018-0900-2/FIGURES/5

  14. Ruthenbeck, G.S., Reynolds, K.J.: Virtual reality for medical training: the state-of-the-art. J. Simul. 9(1), 16–26 (2015). https://doi.org/10.1057/JOS.2014.14/FIGURES/2

    Article  Google Scholar 

  15. Sankaran, N.K., et al.: Efficacy study on interactive mixed reality (IMR) software with sepsis prevention medical education. In: 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings, pp. 664–670, March 2019. https://doi.org/10.1109/VR.2019.8798089

  16. Gupta, A., Cecil, J., Pirela-Cruz, M., Ramanathan, P.: A virtual reality enhanced cyber-human framework for orthopedic surgical training. IEEE Syst. J. 13(3), 3501–3512 (2019). https://doi.org/10.1109/JSYST.2019.2896061

    Article  Google Scholar 

  17. Andersen, S.A.W., Konge, L., Cayé-Thomasen, P., Sørensen, M.S.: Learning curves of virtual mastoidectomy in distributed and massed practice. JAMA Otolaryngol. Head Neck Surg. 141(10), 913–918 (2015). https://doi.org/10.1001/JAMAOTO.2015.1563

    Article  Google Scholar 

  18. Andersen, S.A.W., Konge, L., Cayé-Thomasen, P., Sørensen, M.S.: Retention of mastoidectomy skills after virtual reality simulation training. JAMA Otolaryngol. Head Neck Surg. 142(7), 635–640 (2016). https://doi.org/10.1001/JAMAOTO.2016.0454

    Article  Google Scholar 

  19. Rehman, S., et al.: Simulation-based robot-assisted surgical training: a health economic evaluation. Int. J. Surg. 11(9), 841–846 (2013). https://doi.org/10.1016/J.IJSU.2013.08.006

    Article  Google Scholar 

  20. Baniasadi, T., Ayyoubzadeh, S.M., Mohammadzadeh, N.: Challenges and practical considerations in applying virtual reality in medical education and treatment. Oman Med. J. 35(3), e125 (2020). https://doi.org/10.5001/OMJ.2020.43

    Article  Google Scholar 

  21. Trischler, J., Pervan, S.J., Kelly, S.J., Scott, D.R.: The Value of Co design, vol. 21, no. 1, pp. 75–100, July 2017. https://doi.org/10.1177/1094670517714060

  22. Mitchell, V., Ross, T., May, A., Sims, R., Parker, C.: Empirical investigation of the impact of using co-design methods when generating proposals for sustainable travel solutions, vol. 12, no. 4, pp. 205–220, October 2015. https://doi.org/10.1080/15710882.2015.1091894

  23. Bickerton, M., Pooler, A.: Misplaced ECG electrodes and the need for continuing training, vol. 14, no. 3, pp. 123–132, March 2019. https://doi.org/10.12968/BJCA.2019.14.3.123

  24. Harris, D., Wilson, M., Vine, S.: Development and validation of a simulation workload measure: the simulation task load index (SIM-TLX). Virtual Real 24(4), 557–566 (2020). https://doi.org/10.1007/S10055-019-00422-9/FIGURES/3

    Article  Google Scholar 

  25. Brooke, J.: SUS-A quick and dirty usability scale. https://www.tbistafftraining.info/. Accessed 02 Feb 2023

  26. Sireci, S.G.: /3, Validity Theory and the Methods Used in Validation: Perspectives from Social and Behavioral Sciences, vol. 45, no. 1, pp. 83–117 (1998)

    Google Scholar 

  27. Thomas, S.D., Hathaway, D.K., Arheart, K.L.: Face validity. West J. Nurs. Res. 14, 109–112 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harris Nisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nisar, H., Shah, A., Gupta, A., Kocheril, A. (2023). A Participatory Design Approach to Develop a VR-Based Electrocardiogram Training Simulator. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2023. Lecture Notes in Computer Science, vol 14027. Springer, Cham. https://doi.org/10.1007/978-3-031-35634-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35634-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35633-9

  • Online ISBN: 978-3-031-35634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics