Skip to main content

Energy Dissipation in Shear Thickening Fluid Integrated Structures Under Ballistic Impacts

  • Chapter
  • First Online:
Shear Thickening Fluid

Abstract

Proper integration of shear thickening fluids (STFs) within the cores of advanced composites can enhance energy dissipation through their shear thickening properties. However, designing STFs with strong shear thickening rheological characteristics and increased post-transitional viscosity poses a significant challenge. Another challenge is embodying STFs within the cores of advanced composites. This book chapter primarily focuses on three alternative configurations used to incorporate STFs into the cores of advanced sandwich composite panels. The unique STF-incorporated advanced composite designs were exposed to ballistic impact using 0.380-caliber and 9 mm bullets with average velocities of 150 and 400 m/s, respectively, to quantify the amount of energy dissipation. It was observed that STF-filled SCPs displayed substantially stronger impact resistance to the ballistic impact than hollow SCPs, affirming the viability of SCPs containing STF as a component for enhanced energy absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laun HM. Rheology of extremely shear thickening polymer dispersionsa (passively viscosity switching fluids). J Rheol (N Y N Y). 1991;35:999. https://doi.org/10.1122/1.550257.

    Article  CAS  Google Scholar 

  2. Zhang XZ, Li WH, Gong XL. The rheology of shear thickening fluid (STF) and the dynamic performance of anSTF-filled damper. Smart Mater Struct. 2008;17:035027. https://doi.org/10.1088/0964-1726/17/3/035027.

    Article  Google Scholar 

  3. Fischer C, Braun SA, Bourban P-E, Michaud V, Plummer CJG, Månson JE, Manson J-AE. Dynamic properties of sandwich structures with integrated shear-thickening fluids. Smart Mater Struct. 2006;15:1467–75. https://doi.org/10.1088/0964-1726/15/5/036.

    Article  Google Scholar 

  4. Hoffman RL. Discontinuous and dilatant viscosity behavior in concentrated suspensions .parti. Observation of a flow instability. Trans Soc Rheol. 16(1972):155–73. https://doi.org/10.1122/1.549250.

  5. Chaffey CE. Mechanisms and equations for shear thinning and thickening in dispersions. Colloid Polym Sci. 1977;255:691–8. https://doi.org/10.1007/BF01550058.

    Article  CAS  Google Scholar 

  6. Soutis C. Fibre reinforced composites in aircraft construction. Prog Aerosp Sci. 2005;41:143–51. https://doi.org/10.1016/j.paerosci.2005.02.004.

    Article  Google Scholar 

  7. Friedrich K, Almajid AA. Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater. 2013;20:107–28. https://doi.org/10.1007/s10443-012-9258-7.

    Article  CAS  Google Scholar 

  8. Evans SL, Gregson PJ. Composite technology in load-bearing orthopaedic implants. Biomaterials. 1998;19:1329–42. https://doi.org/10.1016/S0142-9612(97)00217-2.

    Article  CAS  Google Scholar 

  9. Zhao N, Ye R, Tian A, Cui J, Ren P, Wang M. Experimental and numerical investigation on the anti-penetration performance of metallic sandwich plates for marine applications. J Sandw Struct Mater. 2019;22:494–522. https://doi.org/10.1177/1099636219855335.

    Article  Google Scholar 

  10. Zinno A, Fusco E, Prota A, Manfredi G. Multiscale approach for the design of composite sandwich structures for train application. Compos Struct. 2010;92:2208–19. https://doi.org/10.1016/j.compstruct.2009.08.044.

    Article  Google Scholar 

  11. Birman V, Kardomateas GA. Review of current trends in research and applications of sandwich structures. Compos Part B Eng. 2018;142:221–40. https://doi.org/10.1016/j.compositesb.2018.01.027.

    Article  CAS  Google Scholar 

  12. Shen W, Luo B, Yan R, Zeng H, Xu L. The mechanical behavior of sandwich composite joints for ship structures. Ocean Eng. 2017;144:78–89. https://doi.org/10.1016/j.oceaneng.2017.08.039.

    Article  Google Scholar 

  13. Chróścielewski J, Miśkiewicz M, Pyrzowski Ł, Sobczyk B, Wilde K. A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Compos Part B Eng. 2017;126:153–61. https://doi.org/10.1016/j.compositesb.2017.06.009.

    Article  Google Scholar 

  14. Bach MR, Chalivendra VB, Alves C, Depina E. Mechanical characterization of natural biodegradable sandwich materials. J Sandw Struct Mater. 2015;19:482–96. https://doi.org/10.1177/1099636215622143.

    Article  Google Scholar 

  15. Choi HS, Jang YH. Bondline strength evaluation of cocure/precured honeycomb sandwich structures under aircraft hygro and repair environments. Compos Part A Appl Sci Manuf. 2010;41:1138–47. https://doi.org/10.1016/j.compositesa.2010.04.012.

    Article  CAS  Google Scholar 

  16. Manteghi S, Mahboob Z, Fawaz Z, Bougherara H. Investigation of the mechanical properties and failure modes of hybrid natural fiber composites for potential bone fracture fixation plates. J Mech Behav Biomed Mater. 2017;65:306–16. https://doi.org/10.1016/j.jmbbm.2016.08.035.

    Article  CAS  Google Scholar 

  17. Sakly A, Laksimi A, Kebir H, Benmedakhen S. Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications. Eng Fail Anal. 2016;68:22–31. https://doi.org/10.1016/j.engfailanal.2016.03.001.

    Article  Google Scholar 

  18. Di Bella G, Calabrese L, Borsellino C. Mechanical characterisation of a glass/polyester sandwich structure for marine applications. Mater Des. 2012;42:486–94. https://doi.org/10.1016/j.matdes.2012.06.023.

    Article  CAS  Google Scholar 

  19. Xu JL, Chen YW, Wang RH, Li FQ, Liu AY, Wei HZ, Wang DY, Li SH. Research progress in advanced polymer matrix composites for armor protection systems. J Phys Conf Ser. 2020;1507:62011. https://doi.org/10.1088/1742-6596/1507/6/062011.

    Article  CAS  Google Scholar 

  20. Karbhari VM, Zhao L. Use of composites for 21st century civil infrastructure. Comput Methods Appl Mech Eng. 2000;185:433–54. https://doi.org/10.1016/S0045-7825(99)90270-0.

    Article  Google Scholar 

  21. Hoffman RL. Discontinuous and dilatant viscosity behavior in concentrated suspensions, part II. Theory and experimental tests. J Colloid Interface Sci. 1974;46:491–506. file:///C:/Users/VICTOR/Desktop/NEW AND IMP PAPERS/hoffman 1974.pdf

    Article  CAS  Google Scholar 

  22. Srivastava A, Majumdar A, Butola BS. Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater Sci Eng A. 2011;529:224–9. https://doi.org/10.1016/j.msea.2011.09.021.

    Article  CAS  Google Scholar 

  23. Manukonda BH, Chatterjee VA, Verma SK, Bhattacharjee D, Biswas I, Neogi S. Rheology based design of shear thickening fluid for soft body armor applications. Period Polytech Chem Eng. 2019;64:1–10. https://doi.org/10.3311/ppch.13626.

    Article  CAS  Google Scholar 

  24. Lee YS, Wagner NJ. Dynamic properties of shear thickening colloidal suspensions. Rheol Acta. 2003;42:199–208. https://doi.org/10.1007/s00397-002-0290-7.

    Article  CAS  Google Scholar 

  25. Vermant J, Solomon MJ. Flow-induced structure in colloidal suspensions. J Phys Condens Matter. 2005;17 https://doi.org/10.1088/0953-8984/17/4/R02.

  26. Maranzano BJ, Wagner NJ. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys. 2001;114:10514. https://doi.org/10.1063/1.1373687.

    Article  CAS  Google Scholar 

  27. Bender JW, Wagner NJ. Optical measurement of the contribution of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci. 1995;172:171–84.

    Article  CAS  Google Scholar 

  28. Bender J, Wagner NJ. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol (N Y N Y). 1996;40:899–916. https://doi.org/10.1122/1.550767.

    Article  CAS  Google Scholar 

  29. Maranzano BJ, Wagner NJ. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys. 2002;117:10291–302. https://doi.org/10.1063/1.1519253.

    Article  CAS  Google Scholar 

  30. D’haene P, Mewis J, Fuller GG. Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci. 1993;156:350–8. https://doi.org/10.1006/jcis.1993.1122.

    Article  Google Scholar 

  31. Kaffashi B, O’Brien VT, Mackay ME, Underwood SM. Elastic-Like and viscous-like components of the shear viscosity for nearly hard sphere, Brownian suspensions. J Colloid Interface Sci. 1997;187:22–8. https://doi.org/10.1006/jcis.1996.4611.

    Article  CAS  Google Scholar 

  32. O’Brien VT, Mackay ME. Stress components and shear thickening of concentrated hard sphere suspensions. Langmuir. 2000;16:7931–8. https://doi.org/10.1021/la000050h.

    Article  CAS  Google Scholar 

  33. Wagner NJ, Brady JF. Shear thickening in colloidal dispersions. Phys Today. 2009;62:27–32. https://doi.org/10.1063/1.3248476.

    Article  CAS  Google Scholar 

  34. Afeshejani SHA, Sabet SAR, Zeynali ME, Atai M. Energy Absorption in a Shear-Thickening Fluid. J Mater Eng Perform. 2014;23:4289–97. https://doi.org/10.1007/s11665-014-1217-z.

    Article  CAS  Google Scholar 

  35. Lee YS, Wagner NJ. Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates. Ind Eng Chem Res. 2006;45:7015–24. https://doi.org/10.1021/ie0512690.

    Article  CAS  Google Scholar 

  36. K. Yu, H. Cao, K. Qian, X. Sha, Y. Chen, Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol. J Nanoparticle Res. 14:2012. https://doi.org/10.1007/s11051-012-0747-2

  37. Qin J, Zhang G, Shi X. Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol. J Dispers Sci Technol. 2017;38:935–42. https://doi.org/10.1080/01932691.2016.1216435.

    Article  CAS  Google Scholar 

  38. Eric NJW, Wetzel D, Lee YS, Egres RG, Kirkwood KM, Kirkwood JE. The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-kevlar composites, NUMIFORM Proc; 2004. https://doi.org/10.1063/1.1766538.

    Book  Google Scholar 

  39. Lee BWW, Kim IJJ, Kim CGG. The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J Compos Mater. 2009;43:2679–98. https://doi.org/10.1177/0021998309345292.

    Article  CAS  Google Scholar 

  40. Hasanzadeh M, Mottaghitalab V. The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J Mater Eng Perform. 2014;23:1182–96. https://doi.org/10.1007/s11665-014-0870-6.

    Article  CAS  Google Scholar 

  41. Wei M, Lin K, Sun L. Shear thickening fluids and their applications. Mater Des. 2022;216:110570. https://doi.org/10.1016/j.matdes.2022.110570.

    Article  CAS  Google Scholar 

  42. Lee YS, Wetzel ED, Wagner NJ. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci. 2003;38:2825–33. https://doi.org/10.1023/A

    Google Scholar 

  43. Hassan TA, Rangari VK, Jeelani S. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater Sci Eng A. 2010;527:2892–9. https://doi.org/10.1016/j.msea.2010.01.018.

    Article  CAS  Google Scholar 

  44. Majumdar A, Butola BS, Srivastava A. Optimal designing of soft body armour materials using shear thickening fluid. Mater Des. 2013;46:191–8. https://doi.org/10.1016/j.matdes.2012.10.018.

    Article  CAS  Google Scholar 

  45. Sun L-L, Xiong D-S, Xu C-Y. Application of shear thickening fluid in ultra high molecular weight polyethylene fabric. J App Poly Sc. 2013;129:1922–8. https://doi.org/10.1002/app.38844.

    Article  CAS  Google Scholar 

  46. Mishra VD, Mishra A, Singh A, Verma L, Rajesh G. Ballistic impact performance of UHMWP fabric impregnated with shear thickening fluid nanocomposite. Compos Struct. 2022;281:114991. https://doi.org/10.1016/j.compstruct.2021.114991.

    Article  CAS  Google Scholar 

  47. Bablu MA, Manimala JM. Mechanisms of ballistic performance enhancement in silica nanoparticle-treated kevlar fabric. J Compos Mater. 2022;56:2253–66. https://doi.org/10.1177/00219983221093717.

    Article  CAS  Google Scholar 

  48. Asija N, Chouhan H, Amare S, Gebremeskel SA, Bhatnagar N. Impact response of shear thickening fluid ( STF ) treated high strength polymer composites – effect of STF intercalation method. Procedia Eng. 2016;00:1–8. https://doi.org/10.1016/j.proeng.2016.12.133.

    Article  CAS  Google Scholar 

  49. Fu K, Wang H, Chang L, Foley M, Friedrich K, Ye L. Low-velocity impact behaviour of a shear thickening fluid ( STF ) and STF- filled sandwich composite panels. Compos Sci Technol. 2018;165:74–83. https://doi.org/10.1016/j.compscitech.2018.06.013.

    Article  CAS  Google Scholar 

  50. Chen Y, Fu K, Hou S, Han X, Ye L. Multi-objective optimization for designing a composite sandwich structure under normal and 45 ° impact loadings. Compos Part B Eng. 2018;142:159–70.

    Article  CAS  Google Scholar 

  51. Paz J, Díaz J, Romera L, Costas M. Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb- fi lled energy absorption devices. Finite Elem Anal Des. 2014;91:30–9.

    Article  Google Scholar 

  52. Fazilati J, Alisadeghi M. Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact. Thin-Walled Struct. 2016;107:197–206.

    Article  Google Scholar 

  53. Kalantari M, Nami MR, Kadivar MH. Optimization of composite sandwich panel against impact using genetic algorithm. Int J Impact Eng. 2010;37:599–604. https://doi.org/10.1016/j.ijimpeng.2009.12.002.

    Article  Google Scholar 

  54. Li W, Sun F, Wang P, Fan H, Fang D. A novel carbon fiber reinforced lattice truss sandwich cylinder : Fabrication and experiments. Compos Part A. 2016;81:313–22.

    Article  CAS  Google Scholar 

  55. Burlayenko VN, Sadowski T. Effective elastic properties of foam-filled honeycomb cores of sandwich panels. Compos Struct. 2010;92:2890–900. https://doi.org/10.1016/j.compstruct.2010.04.015.

    Article  Google Scholar 

  56. M. V Hosur, M. Abdullah, S. Jeelani. Manufacturing and low-velocity impact characterization of foam filled 3-D integrated core sandwich composites with hybrid face sheets, Compos. Struct. 69:2005;167–181. https://doi.org/10.1016/j.compstruct.2004.06.008

  57. Vaidya UK, Ulven C, Pillay S, Ricks H. Impact Damage of Partially Foam-filled Co-injected Honeycomb Core Sandwich Composites. J Compos Mater. 2003;37:611–26. https://doi.org/10.1177/002199803029724.

    Article  Google Scholar 

  58. Zhang G, Wang B, Ma L, Wu L, Pan S, Yang J. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Compos Struct. 2014;108:304–10. https://doi.org/10.1016/j.compstruct.2013.09.040.

    Article  Google Scholar 

  59. Caliskan U, Apalak MK. Bending impact behaviour of sandwich beams with expanded polystyrene foam core: Analysis. J Sandw Struct Mater. 2019;21:230–59. https://doi.org/10.1177/1099636216689545.

    Article  CAS  Google Scholar 

  60. Atas C, Potoğlu U. The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores. J Sandw Struct Mater. 2016;18:215–28. https://doi.org/10.1177/1099636215613775.

    Article  CAS  Google Scholar 

  61. Islam MM, Kim HS. Sandwich composites made of syntactic foam core and paper skin: Manufacturing and mechanical behavior. J Sandw Struct Mater. 2011;14:111–27. https://doi.org/10.1177/1099636211413564.

    Article  CAS  Google Scholar 

  62. Gupta N, Maharsia R. Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications. Appl Compos Mater. 2005;12:247–61. https://doi.org/10.1007/s10443-005-1130-6.

    Article  CAS  Google Scholar 

  63. Yang JS, Chen SY, Li S, Pang YZ, Schmidt R, Schröder KU, Qu J, Wu LZ. Dynamic responses of hybrid lightweight composite sandwich panels with aluminium pyramidal truss cores. J Sandw Struct Mater. 2020;23:2176. https://doi.org/10.1177/1099636220909816.

    Article  CAS  Google Scholar 

  64. Tarlochan F, Ramesh S. Composite sandwich structures with nested inserts for energy absorption application. Compos Struct. 2012;94:904–16. https://doi.org/10.1016/j.compstruct.2011.10.010.

    Article  Google Scholar 

  65. Mezeix L, Dols S, Bouvet C, Castanié B, Giavarini JP, Hongkarnjanakul N. Experimental analysis of impact and post-impact behaviour of inserts in Carbon sandwich structures. J Sandw Struct Mater. 2019;21:135–53. https://doi.org/10.1177/1099636216687582.

    Article  Google Scholar 

  66. Crupi V, Kara E, Epasto G, Guglielmino E, Aykul H. Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches. J Sandw Struct Mater. 2016;20:42–69. https://doi.org/10.1177/1099636216629375.

    Article  CAS  Google Scholar 

  67. Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos Sci Technol. 2007;67:565–78. https://doi.org/10.1016/j.compscitech.2006.08.007.

    Article  CAS  Google Scholar 

  68. Chatterjee VA, Dey P, Verma SK, Bhattacharjee D, Biswas I, Neogi S. Probing the intensity of dilatancy of high performance shear-thickening fluids comprising silica in polyethylene glycol. Mater Res Express. 2019;6:1–22. https://doi.org/10.1088/2053-1591/ab1185.

    Article  CAS  Google Scholar 

  69. K. Czech, R. Oliwa, D. Krajewski, K. Bulanda, M. Oleksy, G. Budzik, A. Mazurkow, Hybrid polymer composites used in the arms industry: A review, Materials (Basel). 14:2021. https://doi.org/10.3390/ma14113047

  70. Warren J, Offenberger S, Toghiani H, Pittman CU, Lacy TE, Kundu S. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions. ACS Appl Mater Interfaces. 2015;7:18650–61. https://doi.org/10.1021/acsami.5b05094.

    Article  CAS  Google Scholar 

  71. Gürgen S, Kuşhan MC. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos Part A Appl Sci Manuf. 2017;94:50–60. https://doi.org/10.1016/j.compositesa.2016.12.019.

    Article  CAS  Google Scholar 

  72. Maranzano BJ, Wagner NJ. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. J Rheol (N Y N Y). 2001;45:1205–22. https://doi.org/10.1122/1.1392295.

    Article  CAS  Google Scholar 

  73. Q. shi Wang, R. jun Sun, M. Yao, M. yu Chen, Y. Feng, The influence of temperature on inter-yarns fictional properties of shear thickening fluids treated Kevlar fabrics. Compos Part A Appl Sci Manuf 116 (2019) 46–53. https://doi.org/10.1016/j.compositesa.2018.10.020

  74. V.A. Chatterjee, S.K. Verma, D. Bhattacharjee, I. Biswas, S. Neogi, Manufacturing of dilatant fluid embodied Kevlar-Glass-hybrid-3D-fabric sandwich composite panels for the enhancement of ballistic impact resistance, Chem Eng J 406 (2021). https://doi.org/10.1016/j.cej.2020.127102

  75. V.A. Chatterjee, S.K. Verma, D. Bhattacharjee, I. Biswas, S. Neogi, Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact, Compos Struct. 225 (2019). https://doi.org/10.1016/j.compstruct.2019.111148

  76. P.K. Mungamurugu, P. Marru, H.H. Sardar, S. Neogi, Long term performance study of glass reinforced composites with different resins under marine environment, 18 (2017) 122–130. https://doi.org/10.1007/s12221-017-6543-y

  77. Chatterjee VA, Saraswat R, Verma SK, Bhattacharjee D, Biswas I, Neogi S. Embodiment of dilatant fluids in fused-double-3D-mat sandwich composite panels and its effect on energy-absorption when subjected to high-velocity ballistic impact. Compos Struct. 2020;249:112588. https://doi.org/10.1016/j.compstruct.2020.112588.

    Article  Google Scholar 

  78. Liu X-Q, Bao R-Y, Wu X-J, Yang W, Xie B-H, Yang M-B. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv. 2015;5:18367–74. https://doi.org/10.1039/C4RA16261G.

    Article  CAS  Google Scholar 

  79. Raghavan S, Khan S. Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interface Sci. 1997;185:57–67. https://doi.org/10.1006/jcis.1996.4581.

    Article  CAS  Google Scholar 

  80. Raghavan SR, Carolina N, Walls HJ, Khan SA. Rheology of silica dispersions in organic liquids : new evidence for solvation forces dictated by Hydrogen Bonding. Langmuir. 2000;16:7920–30. https://doi.org/10.1021/la991548q.

    Article  CAS  Google Scholar 

  81. Moriana AD, Tian T, Sencadas V, Li W. Comparison of rheological behaviors with fumed silica-based shear thickening fluids. Korea-Australia Rheol J. 2016;28:197–205. https://doi.org/10.1007/s13367-016-0020-9.

    Article  Google Scholar 

  82. Asija N, Chouhan H, Gebremeskel SA, Bhatnagar N. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica. J Nanopart Res. 2017;19:21. https://doi.org/10.1007/s11051-016-3723-4.

    Article  CAS  Google Scholar 

  83. Wagner NJ, Lee YS. The Ballistic Impact Characteristics of Kevlar Woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid. J Mater Sci. 2015;8:2825–33. https://doi.org/10.1023/A

    Google Scholar 

  84. Naik NK, Shrirao P. Composite structures under ballistic impact. Compos Struct. 2004;66:579–90. https://doi.org/10.1016/j.compstruct.2004.05.006.

    Article  Google Scholar 

  85. Sheikh AH, Bull PH, Kepler JA. Behaviour of multiple composite plates subjected to ballistic impact. Compos Sci Technol. 2009;69:704–10. https://doi.org/10.1016/j.compscitech.2008.03.022.

    Article  CAS  Google Scholar 

  86. Sorrentino L, Bellini C, Corrado A, Polini W, Aricò R. Ballistic performance evaluation of composite laminates in kevlar 29. Procedia Eng. 2015;88:255–62. https://doi.org/10.1016/j.proeng.2015.06.048.

    Article  CAS  Google Scholar 

  87. Wambua P, Vangrimde B, Lomov S, Verpoest I. The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos Struct. 2007;77:232–40. https://doi.org/10.1016/j.compstruct.2005.07.006.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the TBRL, Defense Research and Development Organization, Chandigarh, India, for supporting this research by supplying certain raw materials, providing relevant information into the research, and making it possible for the ballistic tests to be carried out in their facility. The authors express their gratitude to scientists Ms. I. Biswas, Dr. D. Bhattacharjee, and Dr. S. K. Verma for their unwavering support. The research associates, technicians, staff, and students of the Composite Application and Testing Laboratory, Indian Institute of Technology, Kharagpur, India, are also acknowledged for all of their generous assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Neogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, V.A., Singh, S., Neogi, S. (2023). Energy Dissipation in Shear Thickening Fluid Integrated Structures Under Ballistic Impacts. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-35521-9_7

Download citation

Publish with us

Policies and ethics