Skip to main content

Shear Thickening Fluid/Cork Composites Against Blunt Impacts in Football Shin Guards Applications

  • Chapter
  • First Online:
Shear Thickening Fluid

Abstract

Rheinforce technology improves the mechanical properties of a resilient material by adding a complex fluid to it using a microfluidic pattern (and, for, load, uses, Campo-Deaño, Composite, dampening, external, Galindo-Rosales, layer, material, obtaining, Patent, process, thereof., WO2016051320A1). In 2015, this technology was tested in micro-agglomerated cork pads showing promising results (Galindo-Rosales et al. Materials & Design 82:326–334, 2015); however, its suitability to be used in commercial products was not yet assessed. In this chapter, four different Rheinforce cork composites were analyzed under blunt impact test conditions. The composites consisted of two cork layers (bottom 4 mm and top 1.2 mm in thickness), being the bottom one engraved with different microfluidic patterns (straight, splines, grid, and honeycomb) and filled with a single shear thickening fluid (concentrated suspension of fumed silica in polypropylene glycol). The results showed that the honeycomb microfluidic pattern is the one providing the largest energy dissipation, and its performance is also compared with the performance of three commercial shin guards qualified by the European Norm EN 1306 (Protective clothing — Shin guards for association football players — Requirements and test methods. EN 13061:2009EN 13061, 2009). The latter results allowed to confirm the excellence performance in terms of dissipation energy, exceeding the best results of the commercial shin guards with a considered reduction in thickness and without the presence of the hard shell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

dpi:

Dots per inch

EN:

European Norm

EPP:

Expanded polypropylene

EPS:

Expanded polystyrene

EVA:

Ethylene-vinyl acetate

FIFA:

Fédération Internationale de Football Association

NOCSAE:

National Operating Committee on Standards for Athletic Equipment

PMMA:

Poly(methyl methacrylate)

PPE:

Personal protective equipment

PPG:

Polypropylene glycol

PVC:

Poly(vinyl chloride)

STF:

Shear thickening fluid

%v/v:

Percentage in volume

%w/w:

Percentage in weight

References

  1. Galindo-Rosales FJ, Campo-Deaño L. Composite layer material for dampening external load, obtaining process, and uses thereof. Patent WO2016051320A1

    Google Scholar 

  2. Galindo-Rosales FJ, Martínez-Aranda S, Campo-Deaño L. CorkSTFμfluidics – A novel concept for the development of eco-friendly light-weight energy absorbing composites. Mater Des. 2015;82:326–34. https://doi.org/10.1016/j.matdes.2014.12.025.

    Article  Google Scholar 

  3. Protective clothing — Shin guards for association football players — Requirements and test methods. EN 13061:2009EN 13061:2009

    Google Scholar 

  4. United States Department of Labor. Occupational safety and health administration. Personal protective equipment. Available from: https://www.osha.gov/personal-protective-equipment

  5. Delides GS. The royal tombs at Vergina Macedonia, Greece, revisited a forensic review. Int J Forensic Sci Pathol. 2016;4(4):234–9. https://doi.org/10.19070/2332-287X-1600056.

    Article  Google Scholar 

  6. Muay Thai Fight Us Vs Burma (80668065) – Muay Thai – Available from: https://es.wikipedia.org/wiki/Muay_thai#/media/Archivo:Muay_Thai_Fight_Us_Vs_Burma_(80668065).jpeg

  7. Alexander C. How do we know what ancient Greek warriors wore for battle? It’s in ‘The Iliad. National Geographic. Published 19/2/2021. Availabel from: https://www.nationalgeographic.com/history/history-magazine/article/arms-armor-ancient-greece-full-display-the-iliad

  8. Standard test method and performance specification for newly manufactured soccer shin guards. National Operating Committee On Standards For Athletic Equipment. NOCSAE DOC (ND) 090-06m18. February, 2018. Available from: https://nocsae.org/wp-content/uploads/2018/05/ND090-06m18MfrdSoccerShinGuardsStdperformance-1.pdf

  9. The history of the laws of the game Fédération Internationale de Football Association. 2014 Available from: http://www.fifa.com/classicfootball/history/the-laws/from-1863-to-present.html

  10. Vriend I, Valkenberg H, Schoots W, Goudswaard GJ, van der Meulen Wout J, Backx FJG. Shinguards effective in preventing lower leg injuries in football: Population-based trend analyses over 25 years. J Sci Med Sport. 2015;18(5):518–22. https://doi.org/10.1016/j.jsams.2014.07.002.

    Article  Google Scholar 

  11. Barrey PB, John HL, James AN, William EG. Tibia and fibula fractures in soccer players. Knee Surg Sports Traumatol Arthrosc. 1999;7:262–6.

    Article  Google Scholar 

  12. Ankrah S, Mills NJ. Performance of football shin guardsfor direct stud impacts. Sports Eng. 2003;6:207–20.

    Article  Google Scholar 

  13. Francisco A, Nightingale RW, Guilak F, Glisson RR, Garret WE. Comparison of soccer shin guards in preventing ti-bia fracture. Am J Sports Med. 2000;28:227–33.

    Article  CAS  Google Scholar 

  14. Gürgen S, Kuşhan MC, Li W. Shear thickening fluids in protective applications: A review. Prog Polym Sci. 2017;75:48–72. https://www.sciencedirect.com/science/article/pii/S0079670017300035

    Article  Google Scholar 

  15. Galindo-Rosales FJ. Complex Fluids in Energy Dissipating Systems. Appl Sci. 2016;6(8):206. https://doi.org/10.3390/app6080206.

    Article  CAS  Google Scholar 

  16. Galindo-Rosales FJ, Rubio-Hernández FJ, Velázquez-Navarro JF. Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids. Rheol Acta. 2009;48:699–708. https://doi.org/10.1007/s00397-009-0367-7.

    Article  CAS  Google Scholar 

  17. Ricardo J, Andrade E, Jacob AR, Galindo-Rosales FJ, Campo-Deaño L, Huang Q, Hassager O, Petekidis G. Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and extensional flow. J Rheol. 2020;64:1179–96. https://doi.org/10.1122/1.5143653.

    Article  CAS  Google Scholar 

  18. Brown E, Jaeger HM. Through Thick and Thin. Science. 2011;333(6047):1230–1. https://doi.org/10.1126/science.1211155.

    Article  CAS  Google Scholar 

  19. Barnes HA. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in newtonian liquids. J Rheol. 1989;33(2):329–66. https://sor.scitation.org/doi/abs/10.1122/1.550017

    Article  CAS  Google Scholar 

  20. Dawson MA. Composite plates with a layer of fluid-filled, reticulated foam for blast protection of infrastructure. Int J Impact Eng. 2009;36(10):1288–95.

    Article  Google Scholar 

  21. Feng X, et al. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids. Mater Des. 2014;64:456–61. https://doi.org/10.1016/j.matdes.2014.06.060

  22. Lomakin EV, Mossakovsky PA, Bragov AM, et al. Investigation of impact resistance of multilayered woven composite barrier impregnated with the shear thickening fluid. Arch Appl Mech. 2011;81:2007–20. https://doi.org/10.1007/s00419-011-0533-0.

    Article  Google Scholar 

  23. Gürgen S, Fernandes FAO, de Sousa RJA, et al. Development of Eco-friendly Shock-absorbing Cork Composites Enhanced by a Non-Newtonian Fluid. Appl Compos Mater. 2021;28:165–79. https://doi.org/10.1007/s10443-020-09859-7.

    Article  Google Scholar 

  24. Rizzo F, Pinto F, Meo M. Investigation of Silica-Based Shear Thickening Fluid in Enhancing Composite Impact Resistance. Appl Compos Mater. 2020;27:209–29. https://doi.org/10.1007/s10443-020-09805-7.

    Article  CAS  Google Scholar 

  25. Myronidis K, Thielke M, Kopeć M, Meo M, Pinto F. Polyborosiloxane-based, dynamic shear stiffening multilayer coating for the protection of composite laminates under low velocity impact. Comput Sci Technol. 2022;222 https://doi.org/10.1016/j.compscitech.2022.109395.

  26. Brown E, Jaeger HM. The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol. 2012;56:875–923. https://doi.org/10.1122/1.4709423.

    Article  CAS  Google Scholar 

  27. Galindo-Rosales FJ, Oliveira, M.S.N. And Alves M.A. Optimized cross-slot microdevices for homogeneous extension. RSC Adv. 2014;4:7799–804.

    Article  CAS  Google Scholar 

  28. Galindo-Rosales FJ, Campo-Deaño L, Sousa PC, Ribeiro VM, Oliveira MSN, Alves MA, Pinho FT, et al. Exp Thermal Fluid Sci. 2014;59:128–39. https://doi.org/10.1016/j.expthermflusci.2014.03.004.

    Article  Google Scholar 

  29. Parras L, Galindo-Rosales FJ. Modelling the fluid-flow inside a microchannel under impact loads. J Fluids Struct. 2020;97:103069. https://doi.org/10.1016/j.jfluidstructs.2020.103069.

    Article  Google Scholar 

  30. Sánchez A. Colloidal gels of fumed silica: microstructure, surface interactions and temperature effects. PhD thesis. North Carolina State University; 2006.

    Google Scholar 

  31. Raghavan SR, Walls HJ, Khan SA. Rheology of Silica Dispersions in Organic Liquids: New Evidence for Solvation Forces Dictated by Hydrogen Bonding. Langmuir. 2000;16(21):7920–30.

    Article  CAS  Google Scholar 

  32. Bonfanti A, Bhaskar A, Ashby MF. Plastic deformation of cellular materials, Reference module in materials science and materials engineering. Elsevier; 2016. https://doi.org/10.1016/B978-0-12-803581-8.03009-5.

    Book  Google Scholar 

  33. Galindo-Rosales FJ, Oliveira MSN, Alves MA. Optimized cross-slot microdevices for homogeneous extension. RSC Adv. 2014;4(15):7799–804.

    Article  CAS  Google Scholar 

  34. Lee B-W, et al. The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J Compos Mater. 2009;43(23):2679–98.

    Article  CAS  Google Scholar 

  35. Tatar Y, Ramazanoglu N, Camliguney AF, Saygi EK, Cotuk HB. The effectiveness of shin guards used by football players. J Sports Sci Med. 2014;13(1):120–7. PMID: 24570615; PMCID: PMC3918547

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support from FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and FCT/MCTES LA/P/0045/2020 (ALiCE) and UIDP/00532/2020 (CEFT), funded by national funds through FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Galindo-Rosales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galindo-Rosales, F.J. (2023). Shear Thickening Fluid/Cork Composites Against Blunt Impacts in Football Shin Guards Applications. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-35521-9_4

Download citation

Publish with us

Policies and ethics