Skip to main content

Conductive Shear Thickening Fluids for Multifunctional Purposes

  • Chapter
  • First Online:
Shear Thickening Fluid

Abstract

Conductivity and rheology of conductive shear thickening fluids (C-STFs), which consist of fumed silica, polyethylene glycol (PEG), and multiwalled carbon nanotubes (MWCNTs), are presented in this chapter. First, description of STF, categorization of STF, and definition of STF mechanism are given. C-STFs are also discussed in terms of multifunctionality aspects. Finally, C-STF including base STF (20 wt.% silica) and MWCNTs (0.20 wt.% to 3.50 wt.%) are fabricated, and their conductive and rheological characteristics are presented as a case study. The results show that the inclusion of MWCNTs into STF supports the rheological characteristics of STF while increasing the electrical conductivity sharply. The percolation threshold of C-STFs, as a significant influencing factor on the suspension characteristics, is further studied to understand the influence of MWCNT addition on the electrical resistance of C-STF suspensions. Electrical resistance of C-STF suspensions is significantly suppressed at the percolation threshold due to the intrinsic conductivity of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown E, Jaeger HM. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Rep Prog Phys. 2014;77(4):046602.

    Article  Google Scholar 

  2. Amoo LM, Fagbenle RL. Overview of non-newtonian boundary layer flows and heat transfer. Applications of Heat, Mass and Fluid Boundary Layers: Elsevier; 2020. p. 413–35.

    Google Scholar 

  3. Gürgen S, Kuşhan MC, Li W. Shear thickening fluids in protective applications: A review. Prog Polym Sci. 2017;75:48–72.

    Article  Google Scholar 

  4. Wei M, Lin K, Sun L. Shear thickening fluids and their applications. Mater Des. 2022;110570:110570.

    Article  Google Scholar 

  5. Gates LE Jr. Evaluation and development of fluid armor systems. Hughes Aircraft Co Culver City CA Aerospace Groups; 1968.

    Book  Google Scholar 

  6. Gong X, Xu Y, Zhu W, Xuan S, Jiang W, Jiang W. Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric. J Compos Mater. 2014;48(6):641–57.

    Article  Google Scholar 

  7. Majumdar A, Butola BS, Srivastava A. Optimal designing of soft body Armour materials using shear thickening fluid. Mater Des. 2013;46:191–8.

    Article  CAS  Google Scholar 

  8. Wei R, Dong B, Wang F, Yang J, Jiang Y, Zhai W, et al. Effects of silica morphology on the shear-thickening behavior of shear thickening fluids and stabbing resistance of fabric composites. J Appl Polym Sci. 2020;137(24):48809.

    Article  CAS  Google Scholar 

  9. Gürgen S, Kuşhan MC. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos A: Appl Sci Manuf. 2017;94:50–60.

    Article  Google Scholar 

  10. Taş H, Soykok IF. Investigation of the low velocity impact behaviour of shear thickening fluid impregnated Kevlar, hybrid (Kevlar/carbon) and carbon fabrics. Fibers Polymers. 2021;22(9):2626–34.

    Article  Google Scholar 

  11. Yeh F-Y, Chang K-C, Chen T-W, Yu C-H. The dynamic performance of a shear thickening fluid viscous damper. J Chin Inst Eng. 2014;37(8):983–94.

    Article  CAS  Google Scholar 

  12. Freya R, Senthil R. Optimal evaluation of the rheological parameters for STF dampers in semi-rigid joints of steel structures using response surface method. Adv Civil Eng. 2022;2022:1.

    Article  Google Scholar 

  13. Lim AS, Lopatnikov SL, Wagner NJ, Gillespie JW. Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique. Rheol Acta. 2010;49(8):879–90.

    Article  CAS  Google Scholar 

  14. Yang H-l, J-m R, J-p Z, Wu Q-m, Z-c Z, Xie Y-y. Non-linear viscoelastic rheological properties of PCC/PEG suspensions. Chin J Chem Phys. 2013;22(1):46.

    Article  CAS  Google Scholar 

  15. Khandavalli S, Rothstein JP. Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheol Acta. 2015;54(7):601–18.

    Article  CAS  Google Scholar 

  16. Jiang W, Sun Y, Xu Y, Peng C, Gong X, Zhang Z. Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures. Rheol Acta. 2010;49(11):1157–63.

    Article  CAS  Google Scholar 

  17. Zhou Z, Hollingsworth JV, Hong S, Wei G, Shi Y, Lu X, et al. Effects of particle softness on shear thickening of microgel suspensions. Soft Matter. 2014;10(33):6286–93.

    Article  CAS  Google Scholar 

  18. van Egmond JW. Shear-thickening in suspensions, associating polymers, worm-like micelles, and poor polymer solutions. Curr Opin Colloid Interface Sci. 1998;3(4):385–90.

    Article  Google Scholar 

  19. Wang SQ. Transient network theory for shear-thickening fluids and physically crosslinked networks. Macromolecules. 1992;25(25):7003–10.

    Article  CAS  Google Scholar 

  20. Bautista F, Tepale N, Fernández V, Landázuri G, Hernández E, Macías E, et al. A master dynamic flow diagram for the shear thickening transition in micellar solutions. Soft Matter. 2016;12(1):165–70.

    Article  CAS  Google Scholar 

  21. Elliott PT, Mahli DM, Glass JE. Spray applications: Part IV. Compositional influences of HEUR thickeners on the spray and velocity profiles of waterborne latex coatings. J Coat Technol Res. 2007;4(4):351–74.

    Article  CAS  Google Scholar 

  22. Kim Y, Kumar SKS, Park Y, Kwon H, Kim C-G. High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation. Compos Part B. 2020;185:107742.

    Article  CAS  Google Scholar 

  23. Hoffman RL. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol. 1998;42(1):111–23.

    Article  CAS  Google Scholar 

  24. Boersma WH, Laven J, Stein HN. Viscoelastic properties of concentrated shear-thickening dispersions. J Colloid Interface Sci. 1992;149(1):10–22.

    Article  CAS  Google Scholar 

  25. Laun H, Bung R, Hess S, Loose W, Hess O, Hahn K, et al. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow a. J Rheol. 1992;36(4):743–87.

    Article  CAS  Google Scholar 

  26. Hoffman R. Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J Colloid Interface Sci. 1974;46(3):491–506.

    Article  CAS  Google Scholar 

  27. Della Valle G, Buleon A, Carreau P, Lavoie P-A, Vergnes B. Relationship between structure and viscoelastic behavior of plasticized starch. J Rheol. 1998;42(3):507–25.

    Article  CAS  Google Scholar 

  28. Bender JW, Wagner NJ. Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci. 1995;172(1):171–84.

    Article  CAS  Google Scholar 

  29. Bender J, Wagner NJ. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol. 1996;40(5):899–916.

    Article  CAS  Google Scholar 

  30. Maranzano BJ, Wagner NJ. Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys. 2002;117(22):10291–302.

    Article  CAS  Google Scholar 

  31. Barnes H. Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol. 1989;33(2):329–66.

    Article  CAS  Google Scholar 

  32. Lin NY, Guy BM, Hermes M, Ness C, Sun J, Poon WC, et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys Rev Lett. 2015;115(22):228304.

    Article  Google Scholar 

  33. Peters IR, Majumdar S, Jaeger HM. Direct observation of dynamic shear jamming in dense suspensions. Nature. 2016;532(7598):214–7.

    Article  CAS  Google Scholar 

  34. Wyart M, Cates ME. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys Rev Lett. 2014;112(9):098302.

    Article  CAS  Google Scholar 

  35. Zarei M, Aalaie J. Application of shear thickening fluids in material development. J Mater Res Technol. 2020;9(5):10411–33.

    Article  Google Scholar 

  36. Makowski T, Grala M, Fortuniak W, Kowalczyk D, Brzezinski S. Electrical properties of hydrophobic polyester and woven fabrics with conducting 3D network of multiwall carbon nanotubes. Mater Des. 2016;90:1026–33.

    Article  CAS  Google Scholar 

  37. Grammatikos S, Kordatos E, Matikas T, David C, Paipetis A. Current injection phase thermography for low-velocity impact damage identification in composite laminates. Mater Des. 2014;55:429–41.

    Article  CAS  Google Scholar 

  38. White KL, Yao H, Zhang X, Sue H-J. Rheology of electrostatically tethered nanoplatelets and multi-walled carbon nanotubes in epoxy. Polymer. 2016;84:223–33.

    Article  CAS  Google Scholar 

  39. Wei M, Lv Y, Sun L, Sun H. Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions. Colloid Polym Sci. 2020;298(3):243–50.

    Article  CAS  Google Scholar 

  40. Nakonieczna P, Wierzbicki Ł, Wróblewski R, Płociński T, Leonowicz M. The influence of carbon nanotube addition on the properties of shear thickening fluid. Bull Mater Sci. 2019;42(4):1–4.

    Article  CAS  Google Scholar 

  41. Chen Q, Liu M, Xuan S, Jiang W, Cao S, Gong X. Shear dependent electrical property of conductive shear thickening fluid. Mater Des. 2017;121:92–100.

    Article  CAS  Google Scholar 

  42. Sun L, Wang G, Zhang C, Jin Q, Song Y. On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid. Nanotechnol Rev. 2021;10(1):1339–48.

    Article  CAS  Google Scholar 

  43. Nakonieczna-Dąbrowska P, Wróblewski R, Płocińska M, Leonowicz M. Impact of the carbon Nanofillers addition on rheology and absorption ability of composite shear thickening fluids. Materials. 2020;13(17):3870.

    Article  Google Scholar 

  44. Ghosh A, Chauhan I, Majumdar A, Butola BS. Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose. 2017;24(10):4163–71.

    Article  CAS  Google Scholar 

  45. Li D, Wang R, Liu X, Fang S, Sun Y. Shear-thickening fluid using oxygen-plasma-modified multi-walled carbon nanotubes to improve the quasi-static stab resistance of Kevlar fabrics. Polymers. 2018;10(12):1356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikhi, M.R., Hasanzadeh, M., Gürgen, S. (2023). Conductive Shear Thickening Fluids for Multifunctional Purposes. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-35521-9_2

Download citation

Publish with us

Policies and ethics