Skip to main content

Enhanced Network Anomaly Detection Using Deep Learning Based on U-Net Model

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 227 Accesses

Abstract

Enhanced Network anomaly detection is an open topic that expects to recognize network traffic for security purposes. Anomaly detection is currently one of the critical difficulties in many areas. As data multiplies needs tools to process and analyze different data types. The motivation behind the anomaly detection method is to detect when an entity differs from its normal behaviour. Due to the increasing complexity of calculations and the qualities of the data, it isn’t easy to choose a tool for all types of anomalies. To overcome these issues, this work proposed Support Vector Regression Boosting (SVRB), used for anomaly detection and optimization-based deep learning rates to manage the nearest update and static structure for random weight vector features. These nonlinear methods investigate assessing the elements in secret elements and time complexities. Our model provides a complete description of the recurrence patterns resulting from complex traffic dynamics during “noisy” network anomalies, categorized by computable changes in the statistical effects of the traffic time series. Use the UNIBS dataset to evaluate the performance of the enhanced Support Vector Regression Boosting (SVRB). The simulation results show the improved Support Vector Regression Boosting (SVRB) can achieve higher accuracy using this dataset features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, R., et al.: Metro anomaly detection based on light strip inductive key frame extraction and MAGAN network. IEEE Trans. Instrum. Meas. 71, 1–14 (2022). Article no. 5000214. https://doi.org/10.1109/TIM.2021.3128961

  2. Yousef, W.A., Traoré, I., Briguglio, W.: UN-AVOIDS: unsupervised and nonparametric approach for visualizing outliers and invariant detection scoring. IEEE Trans. Inf. Forensics Secur. 16, 5195–5210 (2021). https://doi.org/10.1109/TIFS.2021.3125608

    Article  Google Scholar 

  3. Zhao, C., Li, C., Feng, S., Su, N., Li, W.: A spectral-spatial anomaly target detection method based on fractional Fourier transform and saliency weighted collaborative representation for hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5982–5997 (2020). https://doi.org/10.1109/JSTARS.2020.3028372

    Article  Google Scholar 

  4. Wang, W., et al.: Anomaly detection of industrial control systems based on transfer learning. Tsinghua Sci. Technol. 26(6), 821–832 (2021). https://doi.org/10.26599/TST.2020.9010041

    Article  Google Scholar 

  5. Wang, Y., et al.: A posteriori hyperspectral anomaly detection for unlabeled classification. IEEE Trans. Geosci. Remote Sens. 56(6), 3091–3106 (2018). https://doi.org/10.1109/TGRS.2018.2790583

    Article  Google Scholar 

  6. Zhong, J., Xie, W., Li, Y., Lei, J., Du, Q.: Characterization of background-anomaly separability with generative adversarial network for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 59(7), 6017–6028 (2021). https://doi.org/10.1109/TGRS.2020.3013022

    Article  Google Scholar 

  7. Guo, Z.-X., Shui, P.-L.: Anomaly based sea-surface small target detection using k-nearest neighbor classification. IEEE Trans. Aerosp. Electron. Syst. 56(6), 4947–4964 (2020). https://doi.org/10.1109/TAES.2020.3011868

    Article  Google Scholar 

  8. Wang, W., Song, W., Li, Z., Zhao, B., Zhao, B.: A novel filter-based anomaly detection framework for hyperspectral imagery. IEEE Access 9, 124033–124043 (2021). https://doi.org/10.1109/ACCESS.2021.3110791

    Article  Google Scholar 

  9. Nho, Y.-H., Ryu, S., Kwon, D.-S.: UI-GAN: generative adversarial network-based anomaly detection using user initial information for wearable devices. IEEE Sens. J. 21(8), 9949–9958 (2021). https://doi.org/10.1109/JSEN.2021.3054394

  10. Li, S., Zhang, K., Hao, Q., Duan, P., Kang, X.: Hyperspectral anomaly detection with multiscale attribute and edge-preserving filters. Geosci. Remote Sens. Lett. 15(10), 1605–1609 (2018). https://doi.org/10.1109/LGRS.2018.2853705

  11. Zhao, Y., Liu, Q., Li, D., Kang, D., Lv, Q., Shang, L.: Hierarchical anomaly detection and multimodal classification in large-scale photovoltaic systems. IEEE Trans. Sustain. Energy 10(3), 1351–1361 (2019). https://doi.org/10.1109/TSTE.2018.2867009

    Article  Google Scholar 

  12. Li, Z., Zhang, Y.: Hyperspectral anomaly detection via image super-resolution processing and spatial correlation. IEEE Trans. Geosci. Remote Sens. 59(3), 2307–2320 (2021). https://doi.org/10.1109/TGRS.2020.3005924

    Article  Google Scholar 

  13. Pu, G., Wang, L., Shen, J., Dong, F.: A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol. 26(2), 146–153 (2021). https://doi.org/10.26599/TST.2019.9010051

    Article  Google Scholar 

  14. Qi, L., Yang, Y., Zhou, X., Rafique, W., Ma, J.: Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0. IEEE Trans. Ind. Inf. 18(9), 6503–6511 (2022). https://doi.org/10.1109/TII.2021.3139363

    Article  Google Scholar 

  15. Kurt, M.N., Yılmaz, Y., Wang, X., Masterman, P.J.: Online privacy-preserving data-driven network anomaly detection. IEEE J. Sel. Areas Commun. 40(3), 982–998 (2022). https://doi.org/10.1109/JSAC.2022.3142302

    Article  Google Scholar 

  16. Gao, F., Li, J., Cheng, R., Zhou, Y., Ye, Y.: ConNet: deep semi-supervised anomaly detection based on sparse positive samples. IEEE Access 9, 67249–67258 (2021). https://doi.org/10.1109/ACCESS.2021.3077014

    Article  Google Scholar 

  17. Guezzaz, A., Asimi, Y., Azrour, M., Asimi, A.: Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection. Big Data Min. Anal. 4(1), 18–24 (2021). https://doi.org/10.26599/BDMA.2020.9020019

  18. Ganokratanaa, T., Aramvith, S., Sebe, N.: Unsupervised anomaly detection and localization based on deep spatiotemporal translation network. IEEE Access 8, 50312–50329 (2020). https://doi.org/10.1109/ACCESS.2020.2979869

    Article  Google Scholar 

  19. Sabuhi, M., Zhou, M., Bezemer, C.-P., Musilek, P.: Applications of generative adversarial networks in anomaly detection: a systematic literature review. IEEE Access 9, 161003–161029 (2021). https://doi.org/10.1109/ACCESS.2021.3131949

    Article  Google Scholar 

  20. Zheng, Z., Zhou, M., Chen, Y., Huo, M., Sun, L.: QDetect: time series querying based road anomaly detection. IEEE Access 8, 98974–98985 (2020). https://doi.org/10.1109/ACCESS.2020.2994461

    Article  Google Scholar 

  21. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021). https://doi.org/10.1109/JPROC.2021.3052449

    Article  Google Scholar 

  22. Naseer, S., et al.: Enhanced network anomaly detection based on deep neural networks. IEEE Access 6, 48231–48246 (2018). https://doi.org/10.1109/ACCESS.2018.2863036

    Article  Google Scholar 

  23. Ullah, I., Mahmoud, Q.H.: Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE Access 9, 103906–103926 (2021). https://doi.org/10.1109/ACCESS.2021.3094024

  24. Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378–2392 (2022). https://doi.org/10.1109/TNNLS.2021.3068344

    Article  MathSciNet  Google Scholar 

  25. Bhanage, D.A., Pawar, A.V., Kotecha, K.: IT infrastructure anomaly detection and failure handling: a systematic literature review focusing on datasets, log preprocessing, machine & deep learning approaches and automated tool. IEEE Access 9, 156392–156421 (2021). https://doi.org/10.1109/ACCESS.2021.3128283

    Article  Google Scholar 

  26. Malaiya, R.K., Kwon, D., Suh, S.C., Kim, H., Kim, I., Kim, J.: An empirical evaluation of deep learning for network anomaly detection. IEEE Access 7, 140806–140817 (2019). https://doi.org/10.1109/ACCESS.2019.2943249

    Article  Google Scholar 

  27. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021). https://doi.org/10.1109/ACCESS.2021.3107975

    Article  Google Scholar 

  28. Garg, S., Kaur, K., Kumar, N., Rodrigues, J.J.P.C.: Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in SDN: a social multimedia perspective. IEEE Trans. Multimedia 21(3), 566–578 (2019). https://doi.org/10.1109/TMM.2019.2893549

    Article  Google Scholar 

  29. Mezina, A., Burget, R., Travieso-Gonzalez, C.M.: Network anomaly detection with temporal convolutional network and U-Net model. Received September 10, 2021, accepted October 3, 2021, date of publication October 21, 2021, date of current version October 27, 2021 (2021)

    Google Scholar 

  30. Pena, E.H.M., Carvalho, L.F., Barbon, S.J., Rodrigues, J.J.P.C., Proença, M.L.J.: Anomaly detection using the correlational paraconsistent machine with digital signatures of the network segment. Inf. Sci. 420, 313–328 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Balakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramya, P., Balakrishnan, S.G., Vidhiyapriya, A. (2023). Enhanced Network Anomaly Detection Using Deep Learning Based on U-Net Model. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_24

Download citation

Publish with us

Policies and ethics