Skip to main content

Computer Simulation of the Process of Profiles Measuring of Objects Electrophysical Parameters by Surface Eddy Current Probes

  • Conference paper
  • First Online:
Information Technology for Education, Science, and Technics (ITEST 2022)

Abstract

The created computer model of the process of measuring continuously changing profiles of electrical conductivity and magnetic permeability in objects with a surface eddy current probe is considered as a tool for developing a computationally efficient metamodel on artificial neural networks, necessary for solving the inverse electrodynamic problem. Also, this computer model is used to simulate the measurement processes in various frequency modes of excitation of eddy currents in magnetic and non-magnetic test objects to study the sensitivity of the method to distinguish a series of slightly different profiles, to determine the optimal frequency ranges that provide the highest possible levels of the output signal of the surface probe. The reliability of the computer model is verified on simple test cases when the near-surface layer is represented by one- and two-layer approximation. It is assumed that in these layers the values of electrical parameters are unchanged. The coincidence with acceptable accuracy of the results of calculations using the created computer model, oriented to a conditionally multilayer representation of test objects, and obtained results for simple cases, for which there are analytical dependences for calculating the output signal of eddy current probes, is shown. As a result of their comparison the adequacy of the created software is proved. A series of model experiments for test objects made of magnetic and non-magnetic materials has been carried out, allowing to make some recommendations regarding the choice of probe’s excitation modes, taking into account the specifics of materials magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabbagh, H.A., Murphy, R.K., Sabbagh, E.H., et al.: Computational Electromagnetics and Model-Based Inversion. SCIENTCOMP. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-8429-6

  2. Liu, G.R., Han, X.: Computational Inverse Techniques in Nondestructive Evaluation. CRC Press, Boca Raton (2003). https://doi.org/10.1201/9780203494486

  3. Lu, M., Meng, X., Chen, L., et al.: Measurement of ferromagnetic slabs permeability based on a novel planar triple-coil sensor. IEEE Sens. J. 20(6), 2904–2910 (2020). https://doi.org/10.1109/JSEN.2019.2957212

    Article  Google Scholar 

  4. Lahrech, A.C., Abdelhadi, B., Feliachi, M., et al.: Electrical conductivity identification of a carbon fiber composite material plate using a rotating magnetic field and multi-coil eddy current sensor. Eur. Phys. J. Appl. Phys. 83(2), 20901 (2018). https://doi.org/10.1051/epjap/2018170411

    Article  Google Scholar 

  5. Avila, J.R.S., How, K.Y., Lu, M., Yin, W.: A novel dual modality sensor with sensitivities to permittivity, conductivity, and permeability. IEEE Sens. J. 18(1), 356–362 (2017). https://doi.org/10.1109/JSEN.2017.2767380

    Article  Google Scholar 

  6. Lu, M., Xie, Y., Zhu, W., et al.: Determination of the magnetic permeability, electrical conductivity, and thickness of ferrite metallic plates using a multifrequency electromagnetic sensing system. IEEE Trans. Industr. Inf. 15(7), 4111–4119 (2018). https://doi.org/10.1109/TII.2018.2885406

    Article  Google Scholar 

  7. Lu, M., Meng, X., Huang, R., et al.: Measuring lift-off distance and electromagnetic property of metal using dual-frequency linearity feature. IEEE Trans. Instrum. Meas. 70, 1–9 (2020). https://doi.org/10.1109/TIM.2020.3029348

    Article  Google Scholar 

  8. Lu, M., Zhu, W., Yin, L., et al.: Reducing the lift-off effect on permeability measurement for magnetic plates from multifrequency induction data. IEEE Trans. Instrum. Meas. 67(1), 167–174 (2017). https://doi.org/10.1109/TIM.2017.2728338

    Article  Google Scholar 

  9. Lu, M., Huang, R., Yin, W., et al.: Measurement of permeability for ferrous metallic plates using a novel lift-off compensation technique on phase signature. IEEE Sens. J. 9(17), 7440–7446 (2019). https://doi.org/10.1109/JSEN.2019.2916431

    Article  Google Scholar 

  10. Lu, M., Xu, H., Zhu, W., et al.: Conductivity lift-off invariance and measurement of permeability for ferrite metallic plates. NDT & E Int. 95, 36–44 (2018). https://doi.org/10.1016/j.ndteint.2018.01.007

    Article  Google Scholar 

  11. Yin, W., Meng, X., Lu, M., et al.: Permeability invariance phenomenon and measurement of electrical conductivity for ferrite metallic plates. Insight - Non-Destruct. Test. Cond. Monit. 61(8), 472–479 (2019). https://doi.org/10.1784/insi.2019.61.8.472

    Article  Google Scholar 

  12. Halchenko, V.Y., Tychkov, V.V., Storchak, A.V., Trembovetska, R.V.: Reconstruction of surface radial profiles of the electrophysical characteristics of cylindrical objects during eddy current measurements with a priori data. The selection formation for the surrogate model construction. Ukr. Metrol. J. 1, 35–50 (2020). https://doi.org/10.24027/2306-7039.1.2020.204226

  13. Halchenko, V.Y., Storchak, A.V., Trembovetska, R.V., Tychkov, V.V.: The creation of a surrogate model for restoring surface profiles of the electrophysical characteristics of cylindrical objects. Ukr. Metrol. J. 3, 27–35 (2020). https://doi.org/10.24027/2306-7039.3.2020.216824

  14. Halchenko, V.Ya., Trembovetska, R.V., Tychkov, V.V., et al.: Additive neural network approximation of multidimensional response surfaces for surrogate synthesis of eddy-current probes. Przegląd Elektrotech. 9, 46–49 (2021). https://doi.org/10.15199/48.2021.09.10

  15. Jiang, P., Zhou, Q., Shao, X.: Surrogate-Model-Based Design and Optimization. Springer Tracts in Mechanical Engineering. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0731-1

  16. Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley, Chichester (2008). https://doi.org/10.1002/9780470770801

  17. Bartz-Beielstein, T., Naujoks, B., Stork, J., Zaefferer, M.: Tutorial on surrogate-assisted modelling. D1.2. Synergy for Smart Multi-Objective Optimisation, Horizon 2020 (2016)

    Google Scholar 

  18. Georgiev, P.: Sensitivity analyses and robust ship design based on metamodels. Dissertation, Technical-University-of-Varna (2008). http://dx.doi.org/10.13140/2.1.2639.1367

  19. Theodoulidis, T.P., Kriezis, E.E.: Eddy Current Canonical Problems (with Applications to Nondestructive Evaluation). Tech Science Press, Forsyth (2006)

    MATH  Google Scholar 

  20. Uzal, E.: Theory of eddy current inspection of layered metals. Dissertation, Iowa State University (1992)

    Google Scholar 

  21. Bowler, N.: Eddy-Current Nondestructive Evaluation. SSMST. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9629-2

  22. Lei, Y.Z.: General series expression of eddy-current impedance for coil placed above multi-layer plate conductor. Chin. Phys. B 27(6), 060308 (2018). https://doi.org/10.1088/1674-1056/27/6/060308

    Article  Google Scholar 

  23. Zhang, J., Yuan, M., Xu, Z., Kim, H.-J., Song, S.-J.: Analytical approaches to eddy current nondestructive evaluation for stratified conductive structures. J. Mech. Sci. Technol. 29(10), 4159–4165 (2015). https://doi.org/10.1007/s12206-015-0910-7

    Article  Google Scholar 

  24. Theodoulidis, T.: Impedance of a coil above a planar conductor with an arbitrary continuous conductivity depth profile. Int. J. Appl. Electromagn. Mech. 59(4), 1179–1185 (2019). https://doi.org/10.3233/JAE-171122

    Article  Google Scholar 

  25. Sun, J.L., Li, Z.L., Yuan, Y.M.: Construction and verification of analytical model for eddy current testing based on multi-layered conductive structures. Adv. Mater. Res. 1006–1007, 833–840 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1006-1007.833

    Article  Google Scholar 

  26. Tychkov, V.V., Halchenko, V.Ia., Trembovetska, R.V., Tychkova, N.B.: Modeling the output signal of the eddy current probe using the Dood’s model. In: IX International Scientific and Technical Conference on Sensors, Devices and Systems-2021, pp. 7–9 (2021). https://er.chdtu.edu.ua/handle/ChSTU/3360. [in Ukr.]

  27. Li, Y.: Theoretical and experimental investigation of electromagnetic NDE for defect characterization. Dissertation, Newcastle University (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslana Trembovetska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halchenko, V., Trembovetska, R., Bazilo, C., Tychkova, N. (2023). Computer Simulation of the Process of Profiles Measuring of Objects Electrophysical Parameters by Surface Eddy Current Probes. In: Faure, E., Danchenko, O., Bondarenko, M., Tryus, Y., Bazilo, C., Zaspa, G. (eds) Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-031-35467-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35467-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35466-3

  • Online ISBN: 978-3-031-35467-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics