Skip to main content

Costus

  • Chapter
  • First Online:
Essentials of Medicinal and Aromatic Crops

Abstract

The Costus plant species are found in Africa, Asia, and America. Costus genus consists of 175 species. Costus is a medicinal plant and is commonly used to treat a variety of maladies, including diabetes and its accompanying disorders. The major secondary metabolites found in costus genus include alkaloids, glycosides, flavanoids, sterols, sesquiterpenes and phenols. Considerable levels of saponins from their seeds include dioscin, diosgenin and gracillin. The plant extracts demonstrate a number of medicinal applications that include antibacterial, antioxidant, antifungal, antidiuretic, anti-inflammatory, analgesic, anti-hyperglycemic, antipyretic, estrogenic, and anti-stress activities. In this work, the medicinal applications of the plant is described on the basis of literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Specht, C. D., & Stevenson, D. W. (2006). A new phylogeny-based generic classification of Costaceae (Zingiberales). Taxon, 55(1), 153–163.

    Article  Google Scholar 

  2. El-Far, A., & Abou-Ghanema, I. (2013). Biochemical and hematological evaluation of Costus speciosus as a dietary supplement to Egyptian buffaloes. African Journal of Pharmacy and Pharmacology, 7(42), 2774–2779.

    Article  Google Scholar 

  3. Kirchoff, B. K., & Rutishauser, R. (1990). The phyllotaxy of costus (Costaceae). Botanical Gazette, 151(1), 88–105.

    Article  Google Scholar 

  4. Ariharan, V., Devi, V. M., Rajakokhila, M., & Prasad, P. N. (2012). Antibacterial activity of Costus speciosus rhizome extract on some pathogenic bacteria. International Journal of Advanced Life Sciences, 4, 24–27.

    Google Scholar 

  5. Arunvanan, M., Sasi, S., Mubarak, H., & Kanagarajan, A. (2013). An overview on anti diabetic activity of Siddha medicinal plants. Asian Journal of Pharmaceutical and Clinical Research, 6, 46–50.

    Google Scholar 

  6. Trease, G. E. (1945). A text-book of pharmacology. Bailliere Tindall & Cassell.

    Google Scholar 

  7. Pawar, V., & Pawar, P. (2014). Costus speciosus: An important medicinal plant. International Journal of Science and Research, 3(7), 28–33.

    Google Scholar 

  8. Ekpo, B. A., Bala, D. N., Essien, E. E., & Adesanya, S. A. (2008). Ethnobotanical survey of Akwa Ibom state of Nigeria. Journal of Ethnopharmacology, 115(3), 387–408.

    Article  PubMed  Google Scholar 

  9. Edeoga, H., & Okoli, B. (1996). Apomictic behaviour in Costus afer–C. lucanusianus (Costaceae) complex in Nigeria. Feddes Repertorium, 107(1–2), 75–82.

    Article  Google Scholar 

  10. Aweke, G. (2007). Costus afer (Ker Grawl). In G. H. Schmelzer & A. Guribraukin (Eds.), Plant Resources of Tropical Africa (PROTA).

    Google Scholar 

  11. Agbede, O. O. (2009). Understanding soil and plant nutrition. Petra Digital Press.

    Google Scholar 

  12. Smith, R., & Smith, T. (2001). Ecology and field biology (6th ed.). Benjamin Cummings. An imprint of Addison Wesley Longman.

    Google Scholar 

  13. Srivastava, S., Singh, P., Jha, K., Mishra, G., Srivastava, S., & Khosa, R. (2011). Anthelmintic activity of aerial parts of Costus speciosus. International Journal of Green Pharmacy (IJGP), 5.

    Google Scholar 

  14. Rani, A. S., Sulakshana, G., & Patnaik, S. (2012). Costus speciosus, an antidiabetic plant-review. FS Journal of Pharmacy Research, 1(3), 51–53.

    Google Scholar 

  15. Najma, C., Chandra, K., & Ansarul, H. (2012). Effect of Costus speciosus Koen on reproductive organs of female albino mice. International Research Journal of Pharmacy, 3(4), 200–202.

    Google Scholar 

  16. Kuniyal, C. P., Heinen, J. T., Negi, B. S., & Kaim, J. C. (2019). Is cultivation of Saussurea costus (Asterales: Asteraceae) sustaining its conservation? Journal of Threatened Taxa, 11(13), 14745–14752.

    Article  Google Scholar 

  17. Kuniyal, C. P., Rawat, Y. S., Oinam, S. S., Kuniyal, J. C., & Vishvakarma, S. C. (2005). Kuth (Saussurea lappa) cultivation in the cold desert environment of the Lahaul valley, northwestern Himalaya, India: Arising threats and need to revive socio-economic values. Biodiversity and Conservation, 14(5), 1035–1045.

    Article  Google Scholar 

  18. Atere, T., Akinloye, O., Ugbaja, R., Ojo, D., & Dealtry, G. (2018). In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Science and Human Wellness, 7(4), 266–272.

    Article  Google Scholar 

  19. Omokhua, G. (2011). Medicinal and socio-cultural importance of Costus afer (Ker Grawl) in Nigeria. African Research Review, 5(5), 282–287.

    Article  Google Scholar 

  20. Sarin, Y., Bedi, K., & Atal, C. (1974). Costus speciosus rhizome as source of diosgenin. Current Science, 569–570.

    Google Scholar 

  21. Whistler, W. A. (2000). Tropical ornamentals: A guide.

    Google Scholar 

  22. Sohrab, S., Mishra, P., & Mishra, S. K. (2021). Phytochemical competence and pharmacological perspectives of an endangered boon—Costus speciosus (Koen.) Sm.: A comprehensive review. Bulletin of the National Research Centre, 45(1), 1–27.

    Article  Google Scholar 

  23. Malviya, N., Jain, S., & Malviya, S. (2010). Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica, 67(2), 113–118.

    PubMed  Google Scholar 

  24. Bever, B. O. (1980). Oral hypoglycaemic plants in West Africa. Journal of Ethnopharmacology, 2(2), 119–127.

    Article  CAS  PubMed  Google Scholar 

  25. Urooj, A. (2010). Nutrient profile and antioxidant components of Costus speciosus Sm. and Costus igneus Nak. Indian Journal of Natural Products and Resources 11:116-118

    Google Scholar 

  26. Van Wyk, B.-E., & Wink, M. (2018). Medicinal plants of the world. Centre for Agriculture and Bioscience International.

    Google Scholar 

  27. Jayaweera, D. (1982). Medicinal plants (p. 151). National Science Council of Sri Lanka.

    Google Scholar 

  28. Bavarva, J. H., & Narasimhacharya, A. (2008). Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22(5), 620–626.

    Article  Google Scholar 

  29. Waisundara, V., Watawana, M., & Jayawardena, N. (2015). Costus speciosus and Coccinia grandis: Traditional medicinal remedies for diabetes. South African Journal of Botany, 98, 1–5.

    Article  Google Scholar 

  30. Muniyandi, S., Nandanan, A., Veeti, S., Narayanan, A., & Ganesan, B. (2013). Studies on Costus speciosus Koen alcoholic extract for larvicidal activity. International Journal of Pharmacognosy and Phytochemical Research, 5(4), 328–329.

    Google Scholar 

  31. Dubey, S., Vijendra, K., Amit, K., Amit, K., & Tiwari, A. (2010). Evaluation of diuretic activity of aqueous and alcoholic rhizomes extracts of Costus speciosus Linn in wister Albino rats. International Journal of Research in Ayurveda and Pharmacy (IJRAP), 1(2), 648–652.

    Google Scholar 

  32. Rajesh, M., Harish, M., Sathyaprakash, R., Shetty, A. R., & Shivananda, T. (2009). Antihyperglycemic activity of the various extracts of Costus speciosus rhizomes. Journal of natural remedies, 9(2), 235–241.

    Google Scholar 

  33. Rastogi, R., & Mehrotra, B. (2004). Compendium of medicinal plants (p. 406). Central Drug Research Institute (CDRI)/National Institute of Communication and Information Resources.

    Google Scholar 

  34. Qiao, C.-f., Li, Q.-W., Dong, H., Xu, L.-S., & Wang, Z.-t. (2002). Studies on chemical constituents of two plants from Costus. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese Materia Medica, 27(2), 123–125.

    CAS  PubMed  Google Scholar 

  35. Yan, C., You-Mei, T., Su-Lan, Y., Yu-Wei, H., Jun-Ping, K., Bao-Lin, L., et al. (2015). Advances in the pharmacological activities and mechanisms of diosgenin. Chinese Journal of Natural Medicines, 13(8), 578–587.

    Article  Google Scholar 

  36. Eliza, J., Daisy, P., Ignacimuthu, S., & Duraipandiyan, V. (2009). Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ-induced diabetic rats. Chemico-Biological Interactions, 182(1), 67–72.

    Article  CAS  PubMed  Google Scholar 

  37. Melchias, G. (2001). Biodiversity and conservation. Science.

    Google Scholar 

  38. Shobana, S., & Naidu, K. A. (2000). Antioxidant activity of selected Indian spices. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 62(2), 107–110.

    Article  CAS  Google Scholar 

  39. Gupta, A. K. (2003). Quality standards of Indian medicinal plants.

    Google Scholar 

  40. Bown, D. (1995). Encyclopaedia of herbs and their uses (International Standard Book Number, 7513) (pp. 20–31). Dorling Kindersley.

    Google Scholar 

  41. Chopra, R., Nayar, S., & Chopra, I. (2006). Glossary of Indian medicinal plants, National Institute of Science Communication and Information Resources (p. 203). Council of Scientific & Industrial Research.

    Google Scholar 

  42. Sivarajan, V., & Balachandran, I. (1994). Ayurvedic drugs and their plant sources (pp. 374–376). Oxford and IBH Publishing Co. Pvt. Ltd.

    Google Scholar 

  43. Bhuyan, B., & Zaman, K. (2008). Evaluation of hepatoprotactive activity of rhizomes of Costus speciosus (J Konig) Smith. Pharmacology, 3, 119–126.

    Google Scholar 

  44. Khanna, P., Sharma, G., Rathore, A., & Manot, S. (1977). Effect of cholesterol on in vitro suspension tissue cultures of Costus speciosus (Koen) Sm., Dioscorea floribunda Mart. & Gal., Solanum aviculare Forst. & Solanum xanthocarpum Schard & Wendl. Indian Journal of Experimental Biology.

    Google Scholar 

  45. Rathore, A. K., & Khanna, P. (1978). Production of Diosgenin from Costus speciosus (Koen) Sm., and Solanum Nigrum L., suspension cultures. Current Science, 47(22), 870–871.

    CAS  Google Scholar 

  46. Rastogi, R. P., & Mehrotra, B. (1990). Compendium of Indian medicinal plants. Central Drug Research Institute.

    Google Scholar 

  47. Nadkarni, K. (2009). Indian materia medica, reprinted. Bombay Popular Prakashan, 1, 21.

    Google Scholar 

  48. Gupta, R. (2010). Medicinal and aromatic plants: Traditional and commercial uses agrotechniques biodiversity conservation. CBS Publishers & Distributors.

    Google Scholar 

  49. Malabadi, R. B. (2005). Antibacterial activity in the rhizome extract of Costus speciosus (Koen.). Journal of Phytological Research, 18(1), 83–85.

    CAS  Google Scholar 

  50. Soladoye, M., & Oyesika, O. (2008). A textbook of medicinal plants from Nigeria. University of Lagos Press.

    Google Scholar 

  51. Omukhua, G., & Godwin-Egein, M. (2011). Root rot disease of five fruit tree seedlings in the nursery. Journal of Agriculture and Social Research (JASR), 11(1).

    Google Scholar 

  52. Panagal, M., Kumar, R. A., Bastin, T. J., Jenifer, S., & Muthuvel, A. (2010). Comparative evaluation of extracts of C. igneus (or C. pictus) for hypoglycemic and hypolipidemic activity in alloxan diabetic rats. International Journal of Pharmacy and Technology, 2(1), 183–195.

    Google Scholar 

  53. Jayasri, M., MATHEWS, L. & Radha, A. (2009). A report on the antioxidant activity of leaves and rhizomes of Costus pictms.

    Google Scholar 

  54. Butola, J. S., & Samant, S. S. (2010). Saussurea species in Indian Himalayan region: Diversity, distribution and indigenous uses. International Journal of Plant Biology, 1(1), e9.

    Article  Google Scholar 

  55. El-Far, A. H., Shaheen, H. M., Alsenosy, A. W., El-Sayed, Y. S., Jaouni, S. K., & Mousa, S. A. (2018). Costus speciosus: Traditional uses, phytochemistry, and therapeutic potentials. Pharmacognosy Reviews, 12, 120–127.

    Article  CAS  Google Scholar 

  56. Rezaeian, S. (2011). Assessment of diosgenin production by Trigonella foenum-graecum L. in vitro condition. American Journal of Plant Physiology, 6(5), 261–268.

    Article  CAS  Google Scholar 

  57. Lepage, C., Liagre, B., Cook-Moreau, J., Pinon, A., & Beneytout, J.-L. (2010). Cyclooxygenase-2 and 5-lipoxygenase pathways in diosgenin-induced apoptosis in HT-29 and HCT-116 colon cancer cells. International Journal of Oncology, 36(5), 1183–1191.

    CAS  PubMed  Google Scholar 

  58. Attele, A. S., Wu, J. A., & Yuan, C.-S. (1999). Ginseng pharmacology: Multiple constituents and multiple actions. Biochemical Pharmacology, 58(11), 1685–1693.

    Article  CAS  PubMed  Google Scholar 

  59. Sautour, M., Mitaine-Offer, A.-C., Miyamoto, T., Dongmo, A., & Lacaille-Dubois, M.-A. (2004). Antifungal steroid saponins from Dioscorea cayenensis. Planta Medica, 70(01), 90–92.

    Article  CAS  PubMed  Google Scholar 

  60. Higdon, K., Scott, A., Tucci, M., Benghuzzi, H., Tsao, A., Puckett, A., et al. (2001). The use of estrogen, DHEA, and diosgenin in a sustained delivery setting as a novel treatment approach for osteoporosis in the ovariectomized adult rat model. Biomedical Sciences Instrumentation, 37, 281–286.

    CAS  PubMed  Google Scholar 

  61. Chen, P.-S., Shih, Y.-W., Huang, H.-C., & Cheng, H.-W. (2011). Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS One, 6(5), e20164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Behera, K., Sahoo, S., & Prusti, A. (2010). Biochemical quantification of diosgenin and ascorbic acid from the tubers of different Dioscorea species found in Orissa. Libyan Agriculture Research Center Journal International, 1(2), 123–127.

    Google Scholar 

  63. McCullough, J. L., & Kelly, K. M. (2006). Prevention and treatment of skin aging. Annals of the New York Academy of Sciences, 1067(1), 323–331.

    Article  PubMed  Google Scholar 

  64. Tada, Y., Kanda, N., Haratake, A., Tobiishi, M., Uchiwa, H., & Watanabe, S. (2009). Novel effects of diosgenin on skin aging. Steroids, 74(6), 504–511.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, J., Jung, K., Kim, Y. S., & Park, D. (2007). Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sciences, 81(3), 249–254.

    Article  CAS  PubMed  Google Scholar 

  66. Misso, M. L., Egberts, K. J., Page, M., O’Connor, D., & Shaw, J. (2010). Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus. Cochrane Database of Systematic Reviews, 1.

    Google Scholar 

  67. Fealy, C. E., Nieuwoudt, S., Foucher, J. A., Scelsi, A. R., Malin, S. K., Pagadala, M., et al. (2018). Functional high-intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Experimental Physiology, 103(7), 985–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Castellanos, I. S., Jeremic, A., Cohen, J., & Zderic, V. (2017). Ultrasound stimulation of insulin release from pancreatic beta cells as a potential novel treatment for type 2 diabetes. Ultrasound in Medicine & Biology, 43(6), 1210–1222.

    Article  Google Scholar 

  69. Huang, Q., Wang, L., Yu, H., & Ur-Rahman, K. (2019). Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. Journal of Controlled Release, 305, 50–64.

    Article  CAS  PubMed  Google Scholar 

  70. Neuenschwander, M., Ballon, A., Weber, K. S., Norat, T., Aune, D., Schwingshackl, L., et al. (2019). Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. British Medical Journal, 366.

    Google Scholar 

  71. Teng, H., & Chen, L. (2017). α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Critical Reviews in Food Science and Nutrition, 57(16), 3438–3448.

    Article  CAS  PubMed  Google Scholar 

  72. Gan, Q., Wang, J., Hu, J., Lou, G., Xiong, H., Peng, C., et al. (2020). The role of diosgenin in diabetes and diabetic complications. The Journal of Steroid Biochemistry and Molecular Biology, 198, 105575.

    Article  CAS  PubMed  Google Scholar 

  73. Uemura, T., Goto, T., Kang, M. S., Mizoguchi, N., Hirai, S., Lee, J. Y., et al. (2011). Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. The Journal of Nutrition, 141(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  74. Sethi, G., Shanmugam, M. K., Warrier, S., Merarchi, M., Arfuso, F., Kumar, A. P., et al. (2018). Pro-apoptotic and anti-cancer properties of diosgenin: A comprehensive and critical review. Nutrients, 10(5), 645.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lv, Y.-c., Yang, J., Yao, F., Xie, W., Tang, Y.-y., Ouyang, X.-p., et al. (2015). Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis, 24(1), 80–89.

    Article  Google Scholar 

  76. Tikhonova, M. A., Yu, C.-H., Kolosova, N. G., Gerlinskaya, L. A., Maslennikova, S. O., Yudina, A. V., et al. (2014). Comparison of behavioral and biochemical deficits in rats with hereditary defined or d-galactose-induced accelerated senescence: Evaluating the protective effects of diosgenin. Pharmacology Biochemistry and Behavior, 120, 7–16.

    Article  CAS  PubMed  Google Scholar 

  77. Kwon, C.-S., Sohn, H. Y., Kim, S. H., Kim, J. H., Son, K. H., Lee, J. S., et al. (2003). Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Bioscience, Biotechnology, and Biochemistry, 67(7), 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  78. Siddiqui, M. A., Ali, Z., Chittiboyina, A. G., & Khan, I. A. (2018). Hepatoprotective effect of steroidal glycosides from Dioscorea villosa on hydrogen peroxide-induced hepatotoxicity in HepG2 cells. Frontiers in Pharmacology, 9, 797.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lee, C. Y., Chou, Y. E., Hsin, M. C., Lin, C. W., Wang, P. H., Yang, S. F., et al. (2020). Dioscorea nipponica Makino suppresses TPA-induced migration and invasion through inhibition of matrix metalloproteinase-9 in human cervical cancer cells. Environmental Toxicology, 35(11), 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, L.-N., Wei, Y.-L., & Peng, J.-Y. (2015). Advances in study of dioscin – A natural product. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese Materia Medica, 40(1), 36–41.

    CAS  PubMed  Google Scholar 

  81. Bandopadhyay, S., Anand, U., Gadekar, V. S., Jha, N. K., Gupta, P. K., Behl, T., et al. (2021). Dioscin: A review on pharmacological properties and therapeutic values. BioFactors.

    Google Scholar 

  82. Balaji, M., Ganjayi, M. S., Kumar, G. E. H., Parim, B. N., Mopuri, R., & Dasari, S. (2016). A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obesity Research & Clinical Practice, 10(4), 363–380.

    Article  Google Scholar 

  83. Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H., & Cabral, J. (2003). Microbial conversion of steroid compounds: Recent developments. Enzyme and Microbial Technology, 32(6), 688–705.

    Article  CAS  Google Scholar 

  84. Wang, Y., Zhang, Y., Zhu, Z., Zhu, S., Li, Y., Li, M., et al. (2007). Exploration of the correlation between the structure, hemolytic activity, and cytotoxicity of steroid saponins. Bioorganic & Medicinal Chemistry, 15(7), 2528–2532.

    Article  CAS  Google Scholar 

  85. He, Z., Tian, Y., Zhang, X., Bing, B., Zhang, L., Wang, H., et al. (2012). Anti-tumour and immunomodulating activities of diosgenin, a naturally occurring steroidal saponin. Natural Product Research, 26(23), 2243–2246.

    Article  CAS  PubMed  Google Scholar 

  86. Christ, B., Xu, C., Xu, M., Li, F.-S., Wada, N., Mitchell, A. J., Han, X.-L., et al. (2019). Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nature Communications, 10(1), 1–11.

    Article  CAS  Google Scholar 

  87. Sonawane, P. D., Pollier, J., Panda, S., Szymanski, J., Massalha, H., Yona, M., et al. (2016). Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants, 3(1), 1–13.

    Article  Google Scholar 

  88. Yang, Y., Laval, S., & Yu, B. (2014). Chemical synthesis of saponins. Advances in Carbohydrate Chemistry and Biochemistry, 71, 137–226.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matloob Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, S., Ahmad, M., Shahid, S., Zahoor, A.F., AL-Huqail, A.A. (2023). Costus. In: Zia-Ul-Haq, M., Abdulkreem AL-Huqail, A., Riaz, M., Farooq Gohar, U. (eds) Essentials of Medicinal and Aromatic Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-35403-8_8

Download citation

Publish with us

Policies and ethics