Skip to main content

Worker Activity Classification Using Multimodal Data Fusion from Wearable Sensors

  • Conference paper
  • First Online:
Advances in Information Technology in Civil and Building Engineering (ICCCBE 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 357))

Abstract

Accurate and automated classification of workers’ activities is critical for safety and performance monitoring of workers, especially in highly hazardous working conditions. Previous studies have explored automated worker activity classification using wearable sensors with a sole type of data (e.g., acceleration) in controlled lab environments. To further improve the accuracy of worker activity classification with wearable sensors, we collected multimodal data from workers that conduct highway maintenance activities such as crack sealing, and pothole patching, in an Indiana Department of Transportation (INDOT) facility. Several activities were identified through field videos, including crack sealing, transferring material and walking. Two datasets were developed based on the collected data with one containing acceleration data only and the other one fusing acceleration data with multimodal data including heart rate, electrodermal activity (EDA), and skin temperature. The K-nearest neighbors (KNN) models were built to classify workers’ activities for the two datasets respectively. Results showed that the accuracies for detecting crack sealing, transferring material, and walking without the data fusion were 1.0, 1.0 and 0.71. With the data fusion, the accuracies for detecting crack sealing, transferring material, and walking became 1.0, 0.93, and 0.93. The overall accuracy for classifying the three activities increased from 0.9069 to 0.9535 with the data fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown S, Harris W, Brooks RD, Dong XS (2021) Fatal injury trends in the construction industry. CPWR Data Bull. 1–6

    Google Scholar 

  2. U.S. Bureau of Labor Statistics (2019) Fatal occupational injuries by industry and event or exposure, all United States. https://www.bls.gov/iif/oshwc/cfoi/cftb0331.htm

  3. Fulford R, Standing C (2014) Construction industry productivity and the potential for collaborative practice. Int J Proj Manag 32:315–326. https://doi.org/10.1016/j.ijproman.2013.05.007

    Article  Google Scholar 

  4. Chapman RE, Butry DT, Huang a. L (2010) Measuring and improving U.S. construction productivity. Proc 18th CIB World Build Congr 1–12

    Google Scholar 

  5. Seo J, Han S, Lee S, Kim H (2015) Computer vision techniques for construction safety and health monitoring. Adv Eng Inform 29:239–251. https://doi.org/10.1016/j.aei.2015.02.001

    Article  Google Scholar 

  6. Akhavian R, Behzadan AH (2016) Productivity analysis of construction worker activities using smartphone sensors. In: 16th International Conference on Computer Civil Building Engineering, pp. 1067–1074

    Google Scholar 

  7. Sherafat B, Ahn CR, Akhavian R et al (2020) Automated methods for activity recognition of construction workers and equipment: state-of-the-art review. J Constr Eng Manag 146:03120002. https://doi.org/10.1061/(asce)co.1943-7862.0001843

    Article  Google Scholar 

  8. Akhavian R, Behzadan AH (2016) Smartphone-based construction workers’ activity recognition and classification. Autom Constr 71:198–209. https://doi.org/10.1016/j.autcon.2016.08.015

    Article  Google Scholar 

  9. Bangaru SS, Wang C, Busam SA, Aghazadeh F (2021) ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors. Autom Constr 126:103653. https://doi.org/10.1016/j.autcon.2021.103653

    Article  Google Scholar 

  10. Jebelli H, Choi B, Lee S (2019) Application of wearable biosensors to construction sites. i: assessing workers’ stress. J Constr Eng Manag 145:1–12. https://doi.org/10.1061/(asce)co.1943-7862.0001729

    Article  Google Scholar 

  11. Liu W, Meng Q, Li Z, Hu X (2021) Applications of computer vision in monitoring the unsafe behavior of construction workers: current status and challenges. Buildings 11:409. https://doi.org/10.3390/buildings11090409

    Article  Google Scholar 

  12. Ryu J, Seo J, Jebelli H, Lee S (2019) Automated action recognition using an accelerometer-embedded wristband-type activity tracker. J Constr Eng Manag 145:04018114. https://doi.org/10.1061/(asce)co.1943-7862.0001579

    Article  Google Scholar 

  13. Kim K, Cho YK (2021) Automatic recognition of workers’ motions in highway construction by using motion sensors and long short-term memory networks. J Constr Eng Manag 147:04020184. https://doi.org/10.1061/(asce)co.1943-7862.0002001

    Article  Google Scholar 

  14. Sanhudo L, Calvetti D, Martins JP et al (2021) Activity classification using accelerometers and machine learning for complex construction worker activities. J Build Eng 35:102001. https://doi.org/10.1016/j.jobe.2020.102001

    Article  Google Scholar 

  15. Randhawa P, Shanthagiri V, Kumar A, Yadav V (2020) Human activity detection using machine learning methods from wearable sensors. Sens Rev 40:591–603. https://doi.org/10.1108/SR-02-2020-0027

    Article  Google Scholar 

  16. Kim K, Cho YK (2021) Automatic recognition of workers’ motions in highway construction by using motion sensors and long short-term memory networks. J Constr Eng Manag 147:1–12. https://doi.org/10.1061/(asce)co.1943-7862.0002001

    Article  Google Scholar 

  17. Arif A, Javaid N, Aldegheishem A, Alrajeh N (2021) Big data analytics for identifying electricity theft using machine learning approaches in microgrids for smart communities. Concurr Comput Pract Exp 33:1–21. https://doi.org/10.1002/cpe.6316

    Article  Google Scholar 

  18. Figueroa G, Chen YS, Avila N, Chu CC (2018) Improved practices in machine learning algorithms for NTL detection with imbalanced data. IEEE Power Energy Soc Gen Meet 2018:1–5. https://doi.org/10.1109/PESGM.2017.8273852

  19. Huang C, Loy CC, Tang X (2016) Learning Deep Representation for Mood Classification in Microblog. 2016 IEEE Conf Comput Vis Pattern Recognit

    Google Scholar 

  20. Tan M, Zhang S, Wu L (2020) Mutual kNN based spectral clustering. Neural Comput Appl 32:6435–6442. https://doi.org/10.1007/s00521-018-3836-z

    Article  Google Scholar 

  21. Pawlovsky AP, Nagahashi M (2014) A method to select a good setting for the kNN algorithm when using it for breast cancer prognosis. 2014 IEEE-EMBS Int Conf Biomed Heal Informatics. BHI 2014:189–192. https://doi.org/10.1109/BHI.2014.6864336

    Article  Google Scholar 

  22. Nagar N, Ben Tal N, Pupko T (2022) EvoRator: prediction of residue-level evolutionary rates from protein structures using machine learning. J Mol Biol 434:167538. https://doi.org/10.1016/j.jmb.2022.167538

    Article  Google Scholar 

  23. Ogunseiju OR, Olayiwola J, Akanmu AA, Nnaji C (2021) Recognition of workers’ actions from time-series signal images using deep convolutional neural network. Smart Sustain Built Environ 11:812–831. https://doi.org/10.1108/SASBE-11-2020-0170

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by the award SPR 4630 from the Joint Transportation Research Program administered by the Indiana Department of Transportation and Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, C., Chen, Y., Feng, Y., Zhang, J. (2024). Worker Activity Classification Using Multimodal Data Fusion from Wearable Sensors. In: Skatulla, S., Beushausen, H. (eds) Advances in Information Technology in Civil and Building Engineering. ICCCBE 2022. Lecture Notes in Civil Engineering, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-031-35399-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35399-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35398-7

  • Online ISBN: 978-3-031-35399-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics