Skip to main content

Superscattering Regime for Si Conical Nanoparticles for the Different Directions of Excitation

  • Conference paper
  • First Online:
Networks and Systems in Cybernetics (CSOC 2023)

Abstract

Through all-dielectric nanophotonics, it becomes possible to obtain a huge variety of new optical phenomena based on semiconductor dielectric nanoresonators. In this study, we investigate easy-to-make truncated-cone resonators and achieve superscattering regime due to the inherent property of cones – broken symmetry along the main axis without involving complex geometry or structured beams. Additional degrees of freedom due to the conicity allow for more fine-tuning of the interaction of light with matter at the nanoscale. #CSOC1120.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barhom, H., et al.: Biological Kerker effect boosts light collection efficiency in plants. Nano Lett. 19, 7062–7071 (2019)

    Article  Google Scholar 

  2. Shamkhi, H.K., et al.: Transparency and perfect absorption of all-dielectric resonant metasurfaces governed by the transverse Kerker effect. Phys. Rev. Mater. 3, 1–10 (2019)

    Google Scholar 

  3. Xu, K., Fang, M., Huang, Z.: Compact unidirectional laser based on all-dielectric metasurface with high quality factor. IEEE Photon. J. 13, 1–9 (2021)

    Google Scholar 

  4. Shankhwar, N., Sinha, R.K., Kalra, Y., Makarov, S., Krasnok, A., Belov, P.: High-quality laser cavity based on all-dielectric metasurfaces. Photon. Nanostruct. 24, 18–23 (2017)

    Article  Google Scholar 

  5. Totero Gongora, J.S., Miroshnichenko, A.E., Kivshar, Y.S., Fratalocchi, A.: Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  6. Sain, B., Meier, C., Zentgraf, T.: Nonlinear optics at all-dielectric nanoantennas and metasurfaces. ArXiv. 1, 1–14 (2020)

    Google Scholar 

  7. Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S.: All-dielectric optical nanoantennas. Opt. Express. 20, 20599 (2012)

    Article  Google Scholar 

  8. Li, N., Lai, Y., Lam, S.H., Bai, H., Shao, L., Wang, J.: Directional control of light with nanoantennas. Adv. Opt. Mater. 9, 1–32 (2021)

    Google Scholar 

  9. Canós Valero, A., et al.: Nanovortex-driven all-dielectric optical diffusion boosting and sorting concept for lab-on-a-chip platforms. Adv. Sci. 7, 1903049 (2020)

    Article  Google Scholar 

  10. Dienerowitz, M., Mazilu, M., Dholakia, K.: Optical manipulation of nanoparticles: a review. J. Nanophoton. 2, 021875 (2008)

    Article  Google Scholar 

  11. Novitsky, D.V., Karabchevsky, A., Lavrinenko, A.V., Shalin, A.S., Novitsky, A.V.: PT symmetry breaking in multilayers with resonant loss and gain locks light propagation direction. Phys. Rev. B. 98, 125102 (2018)

    Article  Google Scholar 

  12. Terekhov, P.D., Evlyukhin, A.B., Redka, D., Volkov, V.S., Shalin, A.S., Karabchevsky, A.: Magnetic octupole response of dielectric quadrumers. Laser Photon. Rev. 14, 1900331 (2020)

    Article  Google Scholar 

  13. Vestler, D., et al.: Circular dichroism enhancement in plasmonic nanorod metamaterials. Opt. Express. 26, 17841 (2018)

    Article  Google Scholar 

  14. Novitsky, D.V., Shalin, A.S., Redka, D., Bobrovs, V., Novitsky, A.V.: Quasibound states in the continuum induced by PT symmetry breaking. Phys. Rev. B. 104, 085126 (2021)

    Article  Google Scholar 

  15. Kozlov, V., Filonov, D., Shalin, A.S., Steinberg, B.Z., Ginzburg, P.: Asymmetric backscattering from the hybrid magneto-electric meta particle. Appl. Phys. Lett. 109, 203503 (2016)

    Article  Google Scholar 

  16. Terekhov, P.D., et al.: Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation. Sci. Rep. 9, 1–9 (2019)

    Article  Google Scholar 

  17. Canós Valero, A., et al.: Theory, observation, and ultrafast response of the hybrid anapole regime in light scattering. Laser Photon. Rev. 15, 2100114 (2021)

    Article  Google Scholar 

  18. Kuznetsov, A.V., Canós Valero, A., Tarkhov, M., Bobrovs, V., Redka, D., Shalin, A.S.: Transparent hybrid anapole metasurfaces with negligible electromagnetic coupling for phase engineering. Nanophotonics 10, 4385–4398 (2021)

    Article  Google Scholar 

  19. Kostina, N.A., et al.: Nanoscale tunable optical binding mediated by hyperbolic metamaterials. ACS Photon. 7, 425–433 (2020)

    Article  Google Scholar 

  20. Ruan, Z., Fan, S.: Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 105, 1–4 (2010)

    Article  Google Scholar 

  21. Krasikov, S.D., et al.: Superscattering for non-spherical objects. J. Phys. Conf. Ser. 2015, 012073 (2021)

    Article  Google Scholar 

  22. Liu, W., Lei, B., Shi, J., Hu, H.: Unidirectional superscattering by multilayered cavities of effective radial anisotropy. Sci. Rep. 6, 1–9 (2016)

    Google Scholar 

  23. Wang, J., Du, J.: Plasmonic and dielectric metasurfaces: design, fabrication and applications. Appl. Sci. 6, 239 (2016)

    Article  Google Scholar 

  24. Su, V.-C., Chu, C.H., Sun, G., Tsai, D.P.: Advances in optical metasurfaces: fabrication and applications [Invited]. Opt. Express. 26, 13148 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. № 075-15-2022-1150). V.B. acknowledges the support of the Latvian Council of Science, project: NEO-NATE, No. Lzp-2022/1-0553.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuznetsov, A.V., Bobrovs, V. (2023). Superscattering Regime for Si Conical Nanoparticles for the Different Directions of Excitation. In: Silhavy, R., Silhavy, P. (eds) Networks and Systems in Cybernetics. CSOC 2023. Lecture Notes in Networks and Systems, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-031-35317-8_24

Download citation

Publish with us

Policies and ethics