Skip to main content

The Conceptual Design of a Data Collection System for Predictive Maintenance

  • Conference paper
  • First Online:
Networks and Systems in Cybernetics (CSOC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 723))

Included in the following conference series:

  • 361 Accesses

Abstract

The core of this work is the design of a conceptual data collection system for predictive maintenance. As a physical device for data collection is the automatic production line – Festo AFB Factory. Via the designed data collection architecture, which consists of several layers, it is possible to obtain complex data from the physical device. The designed system considers the momentary state of the device, it has the ability of a prediction of a future state and that all on the basis of the collected data. Simultaneously thanks to decision-making processes within the Intelligent Devices System (IDS), it is possible to achieve a wider overview about the state of the devices and eventually determine a percentual probability of a malfunction occurrence or a collapse of the given device. The advantage of this kind of solution making is the instant interaction with the induced failure in the production process and a prospective machine shutdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassan Reza, M.N., Agamudai Nambi Malarvizhi, C., Jayashree, S. Mohiuddin, M.: Industry 4.0–technological revolution and sustainable firm performance. In: 2021 Emerging Trends in Industry 4.0 (ETI 4.0), pp. 1–6 (2021). https://doi.org/10.1109/ETI4.051663.2021.9619363

  2. Büchi, G., Cugno, M., Castagnoli, R.: Smart factory performance and Industry 4.0, Technol. Forecast. Soc. Chang. 150, 119790 (2020) ISSN 0040-1625, https://doi.org/10.1016/j.techfore.2019.119790.

  3. Dixon, P.: The Industry 4.0 Lexicon. In: IEEE IAS Pulp and Paper Industry Conference (PPIC), pp. 191–195 (2022). https://doi.org/10.1109/PPIC52995.2022.9888880

  4. Oluwaseun, A.A., Chaubey, M.S. Numbu, L.P.: Industry 4.0: the fourth industrial revolution and how it relates to the application of internet of things (IoT). J. Multi. Eng. Sci. Stud. (JMESS), 5 (2019)

    Google Scholar 

  5. Schuhmacher, J., Hummel, V.: Decentralized control of logistic processes in cyber-physical production systems at the example of ESB logistics learning factory. Procedia CIRP 54, 19–24 (2016). https://doi.org/10.1016/j.procir.2016.04.095

    Article  Google Scholar 

  6. Sakurada, L., Leitão, P.: Multi-Agent systems to implement Industry 4.0 components. In: 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), pp. 21–26 (2020). https://doi.org/10.1109/ICPS48405.2020.9274745

  7. Müller, J.M., Kiel, D., Voigt, K.-I.: What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability 10(1), 247 (2018). https://doi.org/10.3390/su10010247

    Article  Google Scholar 

  8. Cachada, A., et al.: Maintenance 4.0: intelligent and predictive maintenance system architecture. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 139–146 (2018). https://doi.org/10.1109/ETFA.2018.8502489

  9. Poór, P., Basl, J., Zenisek, D.: Predictive Maintenance 4.0 as next evolution step in industrial maintenance development. In: 2019 International Research Conference on Smart Computing and Systems Engineering (SCSE), pp. 245–253 (2019). https://doi.org/10.23919/SCSE.2019.8842659

  10. Câmara, R.A., Mamede, H.S. Santos, V.D.d.: Predictive industrial maintenance with a viable systems model and maintenance 4.0. In: 2019 8th International Conference On Software Process Improvement (CIMPS), pp. 1–8 (2019). https://doi.org/10.1109/CIMPS49236.2019.9082435

  11. Hassankhani Dolatabadi, S., Budinska, I.: Systematic literature review predictive maintenance solutions for SMEs from the last decade. Machines 9, 191 (2021). https://doi.org/10.3390/machines9090191

    Article  Google Scholar 

  12. Zhang, T., Zhang, W., Du, G., Wang, J.: PHM of Rail vehicle based on digital twin. In: 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), pp. 1–5 (2021). https://doi.org/10.1109/PHM-Nanjing52125.2021.9613068

  13. Li, Q., Peng, X.: Application of large-data-driven PHM technology in satellite test and on-orbit management. In: 2017 Prognostics and System Health Management Conference (PHM-Harbin), pp. 1–5 (2017). https://doi.org/10.1109/PHM.2017.8079214

  14. Weyer, S., Schmitt, M., Ohmer, M., Gorecky, D.: Towards Industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems. In: IFAC PapersOnLine, vol. 48, pp. 579–584 (2015). https://doi.org/10.1016/j.ifacol.2015.06.143

  15. Zhang, Y., Ye, Z.: Data maintenance and control strategy of group management. In: 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, pp. 141–144 (2011). https://doi.org/10.1109/IBICA.2011.39

  16. Motaghare, O., Pillai, A. S. Ramachandran, K.I.: Predictive maintenance architecture. In: 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–4 (2018). https://doi.org/10.1109/ICCIC.2018.8782406

  17. Jezzini, A., Ayache, M., Elkhansa, L., Makki, B. Zein, M.: Effects of predictive maintenance (PdM), Proactive maintenace (PoM) & Preventive maintenance(PM) on minimizing the faults in medical instruments. In: 2013 2nd International Conference on Advances in Biomedical Engineering, pp. 53–56 (2013). https://doi.org/10.1109/ICABME.2013.6648845

  18. Ma, L., Sun, Y., Mathew, J.: Effects of Preventive Maintenance on the reliability of production lines. In: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 631–635 (2007). https://doi.org/10.1109/IEEM.2007.4419266

  19. Abidi, M.H., Mohammed, M.K., Alkhalefah, H.: Predictive maintenance planning for Industry 4.0 using machine learning for sustainable manufacturing. Sustainability 14(6), 3387 (2022). https://doi.org/10.3390/su14063387

    Article  Google Scholar 

  20. Yuanyuan, L. Jiang, S.: Research on equipment predictive maintenance strategy based on big data technology. In: 2015 International Conference on Intelligent Transportation, Big Data and Smart City, pp. 641–644 (2015). https://doi.org/10.1109/ICITBS.2015.163

  21. Gogliano Sobrinho, O., et al.: Big data analytics in support of the under-rail maintenance management at Vitória – Minas Railway. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 6026–6028 (2021). https://doi.org/10.1109/BigData52589.2021.9671739

  22. Kong, Q., Lu, R., Yin, F., Cui, S.: Privacy-preserving continuous data collection for predictive maintenance in vehicular Fog-Cloud. IEEE Trans. Intell. Transp. Syst. 22(8), 5060–5070 (2021). https://doi.org/10.1109/TITS.2020.3011931

    Article  Google Scholar 

  23. Cachada, A. et al.: Using internet of things technologies for an efficient data collection in maintenance 4.0. In: 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), pp. 113–118 (2019). https://doi.org/10.1109/ICPHYS.2019.8780217

  24. Yanming, T., Ping, Y., Zongjun, G.: Predictive maintenance strategy based upon management information system. In: Proceedings of 2001 International Symposium on Electrical Insulating Materials (ISEIM 2001). 2001 Asian Conference on Electrical Insulating Diagnosis (ACEID 2001). 33rd Symposium on Electrical and Ele, pp. 225–228 (2001). https://doi.org/10.1109/ISEIM.2001.973622

  25. Huynh, K.T., Grall, A., Bérenguer, C.: A parametric predictive maintenance decision-making framework considering improved system health prognosis precision. IEEE Trans. Reliab. 68(1), 375–396 (2019). https://doi.org/10.1109/TR.2018.2829771

    Article  Google Scholar 

  26. Lin, C.-Y., Hsieh, Y.-M., Cheng, F.-T., Huang, H.-C., Adnan, M.: Time series prediction algorithm for intelligent predictive maintenance. IEEE Robot. Autom. Lett. 4(3), 2807–2814 (2019). https://doi.org/10.1109/LRA.2019.2918684

    Article  Google Scholar 

  27. Cinar, E., Kalay, S., Saricicek, I.: A predictive maintenance system design and implementation for intelligent manufacturing. Machines 10, 1006 (2022). https://doi.org/10.3390/machines10111006

  28. Samatas, G.G., Moumgiakmas, S.S. Papakostas, G.: Predictive maintenance - bridging artificial intelligence and IoT. In: 2021 IEEE World AI IoT Congress (AIIoT), pp. 0413–0419 (2021)

    Google Scholar 

  29. Lee, C., Cao, Y., Ng, K.H.: Big Data analytics for predictive maintenance strategies (2017). https://doi.org/10.4018/978-1-5225-0956-1.ch004

  30. The Festo documentation. https://www.festo-didactic.com/ov3/media/customers/1100/afb_en_monitor_056961.pdf

  31. The Festo Stack magazine module documentation. https://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/stack-magazine-module.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC41ODUuNDA5Ng

Download references

Acknowledgment

This publication is the result of the implementation of the project VEGA 1/0193/22: “Proposal of identification and monitoring of production equipment parameters for the needs of predictive maintenance in accordance with the concept of Industry 4.0 using Industrial IoT technologies.” supported by the VEGA.

This contribution was published with the support of the Operational Program Integrated Infrastructure within the project of “Výskum v sieti SANET a možnosti jej ďalšieho využitia a rozvoja, code ITMS 313011W988 (Research into SANET and options of its further utilisation and development), co-financed by the ERDF”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Halenarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halenarova, L., Halenar, I., Tanuska, P. (2023). The Conceptual Design of a Data Collection System for Predictive Maintenance. In: Silhavy, R., Silhavy, P. (eds) Networks and Systems in Cybernetics. CSOC 2023. Lecture Notes in Networks and Systems, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-031-35317-8_15

Download citation

Publish with us

Policies and ethics