Skip to main content

Detection of Variable Astrophysical Signal Using Selected Machine Learning Methods

  • Conference paper
  • First Online:
Artificial Intelligence Application in Networks and Systems (CSOC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 724))

Included in the following conference series:

  • 378 Accesses

Abstract

Machine learning methods are widely used to identify specific patterns, especially in image based data. In our research we focus on quasiperiodic oscillations (QPO) in astronomical objects known as cataclysmic variables (CV). We work with very subtle QPO signals in the form of a power density spectrum (PDS). The confidence of detection of the latter using some common statistical methods could yield less significance than the reality is. We work with real and simulated QPO data and we use sigma intervals as our main statistical method to get the confidence levels. As expected, most of our observed QPO fell under 1-\(\sigma \) and based off this method, such QPO is not significant. In our work, we would like to propose and subsequently evaluate two machine learning algorithms with different lengths of training data. Our main goal is to testify the accuracy and feasibility of the selected machine learning methods in contrast to the sigma intervals. The aim of this paper is to summarise both the theory needed to understand the problem and the results of our conducted research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, A., Jain, A., Kumar Arya, A., Ram, M. (eds.): Artificial Intelligence for Signal Processing and Wireless Communication. De Gruyter (2022)

    Google Scholar 

  2. Shore, S.N.: The Tapestry of Modern Astrophysics. Wiley-Interscience, Hoboken (2011)

    Google Scholar 

  3. Bode, M.F., Evans, A. (eds.): Classical Novae. Cambridge University Press (2008)

    Google Scholar 

  4. HEASARC: NASA’s Archive of Data on Energetic Phenomena. https://heasarc.gsfc.nasa.gov/

  5. Tsang, B.T.-H., Schultz, W.C.: Deep neural network classifier for variable stars with novelty detection capability. Astrophys. J. 877, L14 (2019). https://doi.org/10.3847/2041-8213/ab212c

    Article  Google Scholar 

  6. Möller, A., de Boissière, T.: SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification. Mon. Not. R. Astron. Soc. 491, 4277–4293 (2020). https://doi.org/10.1093/mnras/stz3312

    Article  Google Scholar 

  7. Jain, S., Pandey, K., Jain, P., Seng, K.P.: Artificial Intelligence, Machine Learning, and Mental Health in Pandemics A Computational Approach. Academic Press, London (2022)

    Google Scholar 

  8. Joshi, A.V.: Machine Learning and Artificial Intelligence. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26622-6

  9. Ramírez, D.S., Santamaría, I., Scharf, L.: Coherence in Signal Processing and Machine Learning. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-13331-2

  10. Collins, G.W.: The Fundamentals of Stellar Astrophysics. W.H. Freeman, New York (1989)

    Google Scholar 

  11. Lomb, N.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976)

    Article  Google Scholar 

  12. Bartlett, M.S.: On the theoretical specification and sampling properties of autocorrelated time-series. Suppl. J. R. Stat. Soc. 8, 27–41 (1946). https://doi.org/10.2307/2983611

    Article  MathSciNet  MATH  Google Scholar 

  13. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (2010). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  14. Dobrotka, A., Orio, M., Benka, D., Vanderburg, A.: Searching for the 1 mHz variability in the flickering of V4743 SGR: a cataclysmic variable accreting at a high rate. Astron. Astrophys. 649, A67 (2021). https://doi.org/10.1051/0004-6361/202039742

    Article  Google Scholar 

  15. Orio, M., et al.: Nova LMC 2009a as observed with XMM-Newton, compared with other novae. Mon. Not. R. Astron. Soc. 505, 3113–3134 (2021). https://doi.org/10.1093/mnras/stab1391

    Article  Google Scholar 

  16. Dobrotka, A., Ness, J.-U., Bajčičáková, I.: Fast stochastic variability study of two SU UMa systems V1504 Cyg and V344 Lyr observed by Kepler satellite. Mon. Not. R. Astron. Soc. 460, 458–466 (2016). https://doi.org/10.1093/mnras/stw1001

    Article  Google Scholar 

  17. Bellomo, N., Preziosi, L.: Modelling Mathematical Methods and Scientific Computation. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  18. Timmer, J., Koenig, M.: On generating power law noise. Astron. Astrophys. 300, 707–710 (1995)

    Google Scholar 

  19. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  20. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  21. Khan, A.I., Al-Habsi, S.: Machine learning in computer vision. Procedia Comput. Sci. 167, 1444–1451 (2020). https://doi.org/10.1016/j.procs.2020.03.355

    Article  Google Scholar 

  22. Clarke, B., Fokoué, E., Zhang, H.H.: Principles and Theory for Data Mining and Machine Learning. Springer, New York (2011). https://doi.org/10.1007/978-0-387-98135-2

    Book  MATH  Google Scholar 

  23. Kononenko, I., Kukar, M.: Machine Learning and Data Mining: Introduction to Principles and Algorithms. Horwood Publishing, Chichester (2007)

    Book  MATH  Google Scholar 

  24. Lukic, V., de Gasperin, F., Brüggen, M.: ConvoSource: radio-astronomical source-finding with convolutional neural networks. Galaxies 8, 3 (2019). https://doi.org/10.3390/galaxies8010003

    Article  Google Scholar 

  25. Aniyan, A.K., Thorat, K.: Classifying radio galaxies with the convolutional neural network. Astrophys. J. Suppl. Ser. 230, 20 (2017). https://doi.org/10.3847/1538-4365/aa7333

    Article  Google Scholar 

  26. Davies, A., Serjeant, S., Bromley, J.M.: Using convolutional neural networks to identify gravitational lenses in astronomical images. Mon. Not. R. Astron. Soc. 487, 5263–5271 (2019). https://doi.org/10.1093/mnras/stz1288

    Article  Google Scholar 

  27. Flamary, R.: Astronomical image reconstruction with convolutional neural networks. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2468–2472. IEEE, Kos, Greece (2017)

    Google Scholar 

  28. Kimura, A., Takahashi, I., Tanaka, M., Yasuda, N., Ueda, N., Yoshida, N.: Single-epoch supernova classification with deep convolutional neural networks. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 354–359. IEEE, Atlanta, GA, USA (2017)

    Google Scholar 

  29. Gabbard, H., Williams, M., Hayes, F., Messenger, C.: Matching matched filtering with deep networks for gravitational-wave astronomy. Phys. Rev. Lett. 120, 141103 (2018). https://doi.org/10.1103/PhysRevLett.120.141103

  30. Andersen, T., Owner-Petersen, M., Enmark, A.: Neural networks for image-based wavefront sensing for astronomy. Opt. Lett. 44, 4618 (2019). https://doi.org/10.1364/OL.44.004618

    Article  Google Scholar 

  31. Andersen, T., Owner-Petersen, M., Enmark, A.: Image-based wavefront sensing for astronomy using neural networks. J. Astron. Telesc. Instrum. Syst. 6, 1 (2020). https://doi.org/10.1117/1.JATIS.6.3.034002

    Article  Google Scholar 

  32. Paillassa, M., Bertin, E., Bouy, H.: MAXIMASK and MAXITRACK: two new tools for identifying contaminants in astronomical images using convolutional neural networks. Astron. Astrophys. 634, A48 (2020). https://doi.org/10.1051/0004-6361/201936345

    Article  Google Scholar 

  33. Cabrera-Vives, G., Reyes, I., Forster, F., Estevez, P.A., Maureira, J.-C.: Supernovae detection by using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 251–258. IEEE, Vancouver, BC, Canada (2016)

    Google Scholar 

  34. Becker, I., Pichara, K., Catelan, M., Protopapas, P., Aguirre, C., Nikzat, F.: Scalable end-to-end recurrent neural network for variable star classification. Mon. Not. R. Astron. Soc. 493, 2981–2995 (2020). https://doi.org/10.1093/mnras/staa350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Benka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benka, D., Vašová, S., Kebísek, M., Strémy, M. (2023). Detection of Variable Astrophysical Signal Using Selected Machine Learning Methods. In: Silhavy, R., Silhavy, P. (eds) Artificial Intelligence Application in Networks and Systems. CSOC 2023. Lecture Notes in Networks and Systems, vol 724. Springer, Cham. https://doi.org/10.1007/978-3-031-35314-7_57

Download citation

Publish with us

Policies and ethics