Skip to main content

Upper Bounds on Graph Diameter Based on Laplacian Eigenvalues for Stopping Distributed Flooding Algorithm

  • 213 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 722)

Abstract

Data aggregation is essential in many modern wireless sensor network-based applications as its usage can guarantee a significant increase in the Quality of Service in this technology. In this paper, we consider a geographically deployed group of synchronous wireless sensor nodes employing the distributed flooding algorithm for data aggregation of sensor-measured values. As previously identified in many other papers, properly bounded algorithms are crucial for wireless sensor networks’ effective and long-lasting operation. Therefore, we apply four upper bounds on the graph diameter based on Laplacian eigenvalues to stop executing the mentioned algorithm in the synchronous mode. The purpose of this paper is to provide a comparative study of these four stopping criteria in random graphs of various connectivity and graph order in order to identify the best-performing approach in terms of the number of iterations required for the algorithm to be completed. Moreover, the performance of these approaches is compared to the optimal solution for stopping the distributed flooding algorithm in the synchronous mode, i.e., bounding the algorithm based on the exact value of the graph diameter. Thus, the main contribution of this paper is to analyze the potential applicability of the examined upper bounds to stopping the mentioned concerned algorithm and identify its optimal stopping criterion based on the Laplacian spectrum for real-world scenarios.

Keywords

  • Data aggregation
  • Distributed algorithms
  • Flooding algorithm
  • Graph diameter
  • Laplacian eigenvalues
  • Stopping criterion
  • Synchronous mode
  • Upper bounds
  • Wireless sensor networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511841224

  2. Yang, B., et al.: Edge intelligence for autonomous driving in 6G wireless system: design challenges and solutions. IEEE Wirel. Commun. 28, 40–47 (2021). https://doi.org/10.1109/MWC.001.2000292

    CrossRef  Google Scholar 

  3. Zhou, Y., Liu, Y., Zhao, Y., Huang, P.: Appointed-time average consensus over directed networks. IEEE Trans. Circuits Syst. II: Express Briefs 69, 2922–2926 (2022). https://doi.org/10.1109/TCSII.2022.3152521

  4. Zhu, L., et al.: A wearable, high-resolution, and wireless system for multichannel surface electromyography detection. IEEE Sens. J. 21, 9937–9948 (2021). https://doi.org/10.1109/JSEN.2021.3058987

    CrossRef  Google Scholar 

  5. Moioli, R.C., et al.: Neurosciences and wireless networks: The potential of brain-type communications and their applications. IEEE Commun. Surv. Tutor. 23, 1599–1621 (2021). https://doi.org/10.1109/COMST.2021.3090778

  6. Chowdhury, M.Z., Shahjalal, M., Ahmed, S., Jang, Y.M.: 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020). https://doi.org/10.1109/OJCOMS.2020.3010270

    CrossRef  Google Scholar 

  7. Melgarejo, D.C., et al.: Optimizing flying base station connectivity by RAN slicing and reinforcement learning. IEEE Access 10, 53746–53760 (2022). https://doi.org/10.1109/ACCESS.2022.3175487

    CrossRef  Google Scholar 

  8. Kuthadi, V.M., Selvaraj, R., Baskar, S., Shakeel, P.M., Ranjan, A.: Optimized energy management model on data distributing framework of wireless sensor network in IoT system. Wireless. Pers. Commun. XX, 1–27 (2021). https://doi.org/10.1007/s11277-021-08583-0

  9. Lin, J.C.: Safety of wireless power transfer. IEEE Access 9, 125342–125347 (2021). https://doi.org/10.1109/ACCESS.2021.3108966

    CrossRef  Google Scholar 

  10. Fahmy, H.M.A.: Concepts, Applications, Experimentation and Analysis of Wireless Sensor Networks. SCT, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58015-5

    CrossRef  Google Scholar 

  11. Bhushan, B., Sahoo, G.: Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wirel. Pers. Commun. 98(2), 2037–2077 (2017). https://doi.org/10.1007/s11277-017-4962-0

    CrossRef  Google Scholar 

  12. Phani Rama Krishna, K., Thirumuru, R.: Optimized energy-efficient multi-hop routing algorithm for better coverage in mobile wireless sensor networks. Int. J. Integr. Sci. Technol. 10, 100–109 (2022)

    Google Scholar 

  13. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52, 2292–2330 (2008). https://doi.org/10.1016/j.comnet.2008.04.002

    CrossRef  Google Scholar 

  14. Landaluce, H., Arjona, L., Perallos, A., Falcone, F., Angulo, I., Muralter, F.: A review of IoT sensing applications and challenges using RFID and wireless sensor networks. Sensors 20, 2495 (2020). https://doi.org/10.3390/s20092495

    CrossRef  Google Scholar 

  15. Vikram, R., Sinha, D., De, D., Das, A.K.: EEFFL: energy efficient data forwarding for forest fire detection using localization technique in wireless sensor network. Wirel. Netw. 26(7), 5177–5205 (2020). https://doi.org/10.1007/s11276-020-02393-1

    CrossRef  Google Scholar 

  16. Zhao, J., Li, G.: Study on real-time wearable sport health device based on body sensor networks. Comput. Commun. 154, 40–47 (2020). https://doi.org/10.1016/j.comcom.2020.02.045

    CrossRef  Google Scholar 

  17. Kenyeres, M., Kenyeres, J.: Average consensus over mobile wireless sensor networks: weight matrix guaranteeing convergence without reconfiguration of edge weights. Sensors 20, 3677 (2020). https://doi.org/10.3390/s20133677

    CrossRef  MATH  Google Scholar 

  18. Pragadeswaran, S., Madhumitha, S., Gopinath, S.: Certain investigation on military applications of wireless sensor network. Int. J. Adv. Res. Sci. Commun. Technol. 3, 14–19 (2021). https://doi.org/10.48175/IJARSCT-819

  19. Kenyeres, M., Kenyeres, J.: Distributed mechanism for detecting average consensus with maximum-degree weights in bipartite regular graphs. Mathematics 9, 3020 (2021). https://doi.org/10.3390/math9233020

    CrossRef  MATH  Google Scholar 

  20. Abdulkarem, M., Samsudin, K., Rokhani, F.Z., A Rasid, M.F.: Wireless sensor network for structural health monitoring: a contemporary review of technologies, challenges, and future direction. Struct. Health Monit. 19, 693–735 (2020). https://doi.org/10.1177/1475921719854528

  21. Izadi, D., Abawajy, J.H., Ghanavati, S., Herawan, T.: A data fusion method in wireless sensor networks. Sensors 15, 2964–2979 (2015). https://doi.org/10.3390/s150202964

    CrossRef  Google Scholar 

  22. Randhawa, S., Jain, S.: Data aggregation in wireless sensor networks: previous research, current status and future directions. Wirel. Pers. Commun. 97(3), 3355–3425 (2017). https://doi.org/10.1007/s11277-017-4674-5

    CrossRef  Google Scholar 

  23. Kenyeres, M., Kenyeres, J.: Comparative study of distributed consensus gossip algorithms for network size estimation in multi-agent systems. Future Internet 13, 134 (2021). https://doi.org/10.3390/fi13050134

    CrossRef  MATH  Google Scholar 

  24. Tran, D., Casbeer, D.W., Yucelen, T.: A distributed counting architecture for exploring the structure of anonymous active-passive networks. Automatica (Oxf) 146, 110550 (2022). https://doi.org/10.1016/j.automatica.2022.110550

  25. Krammer, P., Habala, O., Mojžiš, J., Hluchý, L., Jurkovič, M.: Anomaly detection method for online discussion. Procedia Comput. Sci. 155, 311–318 (2019). https://doi.org/10.1016/j.procs.2019.08.045

    CrossRef  Google Scholar 

  26. Liu, X., Yu, J., Li, F., Lv, W., Wang, Y., Cheng, X.: Data aggregation in wireless sensor networks: from the perspective of security. IEEE Internet Things J. 7, 6495–6513 (2019). https://doi.org/10.1109/JIOT.2019.2957396

    CrossRef  Google Scholar 

  27. Mojžiš, J., Laclavík, M.: Relationship discovery and navigation in big graphs. Stud. Comput. Intell. 591, 109–123 (2015). https://doi.org/10.1007/978-3-319-14654-6_7

    CrossRef  Google Scholar 

  28. Ozdemir, S., Xiao, Y.: Secure data aggregation in wireless sensor networks: a comprehensive overview. Comput. Netw. 53, 2022–2037 (2009). https://doi.org/10.1016/j.comnet.2009.02.023

    CrossRef  MATH  Google Scholar 

  29. Maraiya, K., Kant, K., Gupta, N.: Wireless sensor network: a review on data aggregation. Int. J. Sci. Eng. 2, 1–6 (2011)

    Google Scholar 

  30. Kaur, M., Munjal, A.: Data aggregation algorithms for wireless sensor network: a review. Ad Hoc Netw. 100, 102083 (2020). https://doi.org/10.1016/j.adhoc.2020.102083

    CrossRef  Google Scholar 

  31. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49, 327–335 (1995). https://doi.org/10.1080/00031305.1995.10476177

    CrossRef  Google Scholar 

  32. Tidke, B., Mehta, R., Dhanani, J.: Consensus-based aggregation for identification and ranking of top-k influential nodes. Neural Comput. Appl. 32(14), 10275–10301 (2019). https://doi.org/10.1007/s00521-019-04568-0

    CrossRef  Google Scholar 

  33. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control. Lett. 53, 65–78 (2004). https://doi.org/10.1016/j.sysconle.2004.02.022

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197, 143–176 (1994). https://doi.org/10.1016/0024-3795(94)90486-3

    CrossRef  MathSciNet  MATH  Google Scholar 

  35. Tang, M., Priebe, C.E.: Limit theorems for eigenvectors of the normalized Laplacian for random graphs. Ann. Stat. 46, 2360–2415 (2018). https://doi.org/10.1214/17-AOS1623

    CrossRef  MathSciNet  MATH  Google Scholar 

  36. Chung, F.: The diameter and Laplacian eigenvalues of directed graphs. Electron. J. Comb. 13, 1–6 (2006). https://doi.org/10.37236/1142

  37. Pirzada, S., Ganie, H.A., Alghamdi, A.M.: On the sum of signless Laplacian spectra of graphs. Carpathian Math. Publ. 11, 407–417 (2019). https://doi.org/10.15330/cmp.11.2.407-417

  38. Hogben, L.: Handbook of Linear Algebra. Second Edn. CRC Press, Boca Raton (2005). https://doi.org/10.1201/b16113

  39. Mohar, B.: Eigenvalues, diameter, and mean distance in graphs. Graphs Combin. 7, 53–64 (1991). https://doi.org/10.1007/BF01789463

    CrossRef  MathSciNet  MATH  Google Scholar 

  40. Chwila, A., Zadlo, T.: On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction. Stat. Transit. 21, 35–60 (2020). https://doi.org/10.21307/stattrans-2020-013

Download references

Acknowledgment

This work was supported by the Slovak Scientific Grand Agency VEGA under the contract 2/0135/23 “Intelligent sensor systems and data processing” and by the Slovak Research and Development Agency under the contract No. APVV-19-0220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kenyeres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kenyeres, M., Kenyeres, J. (2023). Upper Bounds on Graph Diameter Based on Laplacian Eigenvalues for Stopping Distributed Flooding Algorithm. In: Silhavy, R., Silhavy, P. (eds) Software Engineering Research in System Science. CSOC 2023. Lecture Notes in Networks and Systems, vol 722. Springer, Cham. https://doi.org/10.1007/978-3-031-35311-6_67

Download citation