Skip to main content

Augmenting Character Designers’ Creativity Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Proceedings of the Second International Conference on Innovations in Computing Research (ICR’23)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 721))

Abstract

Recent advances in Generative Adversarial Networks (GANs) continue to attract the attention of researchers in different fields due to the wide range of applications devised to take advantage of their key features. Most recent GANs are focused on realism; however, generating hyper-realistic output is not a priority for some domains, as in the case of this work. The generated outcomes are used here as cognitive components to augment character designers’ creativity while conceptualizing new characters for different multimedia projects. To select the best-suited GANs for such a creative context, we first present a comparison between different GAN architectures and their performance when trained from scratch on a new visual character’s dataset using a single Graphics Processing Unit (GPU). We also explore alternative techniques, such as transfer learning and data augmentation, to overcome computational resource limitations, a challenge faced by many researchers in the domain. Additionally, mixed methods are used to evaluate the cognitive value of the generated visuals on character designers’ agency conceptualizing new characters. The results discussed proved highly effective for this context, as demonstrated by early adaptations to the characters’ design process. As an extension for this work, the presented approach will be further evaluated as a novel co-design process between humans and machines to investigate where and how the generated concepts are interacting with and influencing the design process outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., et al.: Generative adversarial nets, 27, 2672–2680 (2014)

    Google Scholar 

  2. Borji, A.: Generated faces in the wild: quantitative comparison of stable diffusion, midjourney and dall-e 2, arXiv preprint arXiv:2210.00586 (2022)

  3. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  4. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (Canadian Institute for Advanced Research). http://www.cs.toronto.edu/kriz/cifar.html

  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365 (2015). http://arxiv.org/abs/1506.03365

  7. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation (2018)

    Google Scholar 

  8. Tero Karras, T.A., Laine, S.: Flickr-faces-HQ dataset (FFHQ) (2018). https://github.com/nvlabs/ffhq-dataset

  9. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12:104–12:114. Curran Associates, Inc.(2020)

    Google Scholar 

  10. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  11. Fregier, Y., Gouray, J.-B.: Mind2mind: transfer learning for GANs. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information, pp. 851–859. Springer, Cham (2021)

    Chapter  Google Scholar 

  12. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2021)

    Google Scholar 

  13. Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y.: Semantic image synthesis with spatially-adaptive normalization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2019. https://doi.org/10.1109/CVPR.2019.00244

  14. Weatherbed, J.: Artstation is hiding images protesting ai art on the platform, December 2022

    Google Scholar 

  15. Baio, A.: Invasive diffusion: how one unwilling illustrator found herself turned into an ai model, November 2022

    Google Scholar 

  16. Growcoot, M.: Lawsuit filed against ai image generators stable diffusion and midjourney, January 2023

    Google Scholar 

  17. Fish, J., Scrivener, S.: Amplifying the mind’s eye: sketching and visual cognition. Leonardo 23, 117–126 (1990)

    Article  Google Scholar 

  18. Goldschmidt, G.: The dialectics of sketching. Creat. Res. J. 4, 123–143 (1991)

    Article  Google Scholar 

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition (1998)

    Google Scholar 

  20. Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative models, November 2015

    Google Scholar 

  21. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  22. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  23. Mahdizadehaghdam, S., Panahi, A., Krim, H.: Sparse generative adversarial network. In: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, pp. 3063–3071 (2019)

    Google Scholar 

  24. Hong, Y., Hwang, U., Yoo, J., Yoon, S.: How generative adversarial networks and their variants work: an overview, 52(1), 1–43 (2019)

    Google Scholar 

  25. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview, 35(1), 53–65 (2018)

    Google Scholar 

  26. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019)

    Google Scholar 

  27. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). https://arxiv.org/abs/1503.02531

  28. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. abs/1710.10196 (2017)

    Google Scholar 

  29. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–4405 (2019)

    Google Scholar 

  30. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020)

    Google Scholar 

  31. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space?, vol. Oct, pp. 4431–4440 (2019)

    Google Scholar 

  32. Lataifeh, M., Carrasco, X., Elnagar, A.: Diversified character dataset for creative applications (DCDCA) (2022)

    Google Scholar 

  33. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  34. Dreyfus, H.L., Dreyfus, S.E.: Peripheral vision: expertise in real world contexts. Organ. Stud. 26(5), 779–792 (2005)

    Article  Google Scholar 

  35. Payne, J.W.: Thinking aloud: insights into information processing, 5(5), 241–248 (1994)

    Google Scholar 

  36. Sadowska, N., Laffy, D.: The design brief: inquiry into the starting point in a learning journey. Des. J. 20, S1380–S1389 (2017)

    Google Scholar 

  37. Brittain, B.: AI-created images lose U.S. copyrights in test for new technology. Reuters (2023). https://www.reuters.com/legal/ai-created-images-lose-us-copyrights-test-new-technology. Accessed 22 Feb 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Lataifeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lataifeh, M., Carrasco, X., Elnagar, A., Ahmed, N. (2023). Augmenting Character Designers’ Creativity Using Generative Adversarial Networks. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the Second International Conference on Innovations in Computing Research (ICR’23). Lecture Notes in Networks and Systems, vol 721. Springer, Cham. https://doi.org/10.1007/978-3-031-35308-6_7

Download citation

Publish with us

Policies and ethics