Skip to main content

Sensitivity of Repolarization Gradients to Infarct Borderzone Properties Assessed with the Ten Tusscher and Modified Mitchell-Schaeffer Model

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13958))

  • 1283 Accesses

Abstract

Post-infarction ventricular tachycardia (VT) is an important clinical problem that is often caused by a re-entrant circuit located in the infarct border zone (BZ). The main changes in the BZ are in action potential duration (APD) and conduction velocity (CV), which introduce high repolarization time gradients (RTGs) and can lead to re-entry. Computational models can help in VT-risk analysis. However, the complexity of these models and the representation of the electrophysiological properties of the BZ still require investigation. In this study we conduct a sensitivity analysis in which we apply changes in APD and CV in a BZ using the detailed biophysical Ten Tusscher (TT2) model and the phenomenological modified Mitchel-Schaeffer (mMS) ionic model. First, the effect of spatial discretization on the CV is compared for both models. The TT2 model showed much larger mesh dependency for the computed CV than the mMS model. Next, we propose a tuning method to match the mMS AP shape to the TT2 AP shape. We then compare APD restitution properties. The tuned mMS showed similar APD restitution properties for large diastolic intervals (DI), but started to deviate when decreasing the DI. Finally, for both the TT2 and tuned mMS model we found that RTG is more sensitive to variation in APD than to variation in CV. When varying the APD, differences between both models were more pronounced for short than for large APDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cluitmans, M., et al.: Noninvasive detection of spatiotemporal activation-repolarization interactions that prime idiopathic ventricular fibrillation. Sci. Transl. Med. 13(620), eabi9317 (2021)

    Google Scholar 

  2. Connolly, A., Bishop, M.: Computational representations of myocardial infarct scars and implications for arrhythmogenesis. Clin. Med. Insights: Cardiol. 10, CMC-S39708 (2016)

    Google Scholar 

  3. Corrado, C., Niederer, S.: A two-variable model robust to pacemaker behaviour for the dynamics of the cardiac action potential. Math. Biosci. 281, 46–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Costa, C., Hoetzl, E., Rocha, B., Prassl, A., Plank, G.: Automatic parameterization strategy for cardiac electrophysiology simulations. In: Computing in Cardiology 2013, pp. 373–376. IEEE (2013)

    Google Scholar 

  5. Dangman, K., Danilo Jr., P., Hordof, A., Mary-Rabine, L., Reder, R., Rosen, M.: Electrophysiologic characteristics of human ventricular and purkinje fibers. Circulation 65(2), 362–368 (1982)

    Google Scholar 

  6. Deng, D., Prakosa, A., Shade, J., Nikolov, P., Trayanova, N.: Sensitivity of ablation targets prediction to electrophysiological parameter variability in image-based computational models of ventricular tachycardia in post-infarction patients. Front. Physiol. 10, 628 (2019)

    Article  Google Scholar 

  7. Hayashi, M., et al.: Ventricular repolarization restitution properties in patients exhibiting type 1 Brugada electrocardiogram with and without inducible ventricular fibrillation. J. Am. Coll. Cardiol. 51(12), 1162–1168 (2008)

    Article  Google Scholar 

  8. Jing, L., Agarwal, A., Chourasia, S., Patwardhan, A.: Phase relationship between alternans of early and late phases of ventricular action potentials. Front. Physiol. 3, 190 (2012)

    Article  Google Scholar 

  9. Lopez-Perez, A., Sebastian, R., Izquierdo, M., Ruiz, R., Bishop, M., Ferrero, J.: Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia. Front. Physiol. 10, 580 (2019)

    Article  Google Scholar 

  10. Mendonca Costa, C., Plank, G., Rinaldi, C., Niederer, S., Bishop, M.: Modeling the electrophysiological properties of the infarct border zone. Front. Physiol. 9, 356 (2018)

    Article  Google Scholar 

  11. Prakosa, A., et al.: Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2(10), 732–740 (2018)

    Article  Google Scholar 

  12. Prassl, A., et al.: Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Trans. Biomed. Eng. 56(5), 1318–1330 (2009)

    Article  Google Scholar 

  13. Quarteroni, A., Lassila, T., Rossi, S., Ruiz-Baier, R.: Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314, 345–407 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ravens, U., Wettwer, E.: Electrophysiological aspects of changes in heart rate. Basic Res. Cardiol. 93(1), s060–s065 (1998)

    Google Scholar 

  15. Relan, J., et al.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1(3), 396–407 (2011)

    Article  Google Scholar 

  16. Relan, J., Sermesant, M., Delingette, H., Pop, M., Wright, G., Ayache, N.: Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and MR data. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1027–1030. IEEE (2009)

    Google Scholar 

  17. Seemann, G., Carillo, P., Weiss, D.L., Krueger, M.W., Dössel, O., Scholz, E.P.: Investigating arrhythmogenic effects of the hERG mutation N588K in virtual human atria. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 144–153. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01932-6_16

    Chapter  Google Scholar 

  18. Ten Tusscher, K., Panfilov, A.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol.-Heart Circulatory Physiol. 291(3), H1088–H1100 (2006)

    Article  Google Scholar 

  19. Tran, D., Yang, M., Weiss, J., Garfinkel, A., Qu, Z.: Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence. Chaos Interdisc. J. Nonlinear Sci. 17(4), 043115 (2007)

    Google Scholar 

  20. Vigmond, E., Hughes, M., Plank, G., Leon, L.: Computational tools for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36, 69–74 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justina Ghebryal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghebryal, J., Kruithof, E., Cluitmans, M.J.M., Bovendeerd, P.H.M. (2023). Sensitivity of Repolarization Gradients to Infarct Borderzone Properties Assessed with the Ten Tusscher and Modified Mitchell-Schaeffer Model. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics