Skip to main content

A Geometry-Based Strategic Placement of RISs in Millimeter Wave Device to Device Communication

  • Conference paper
  • First Online:
Computer and Communication Engineering (CCCE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1823))

Included in the following conference series:

Abstract

Recently, reconfigurable intelligent surfaces (RISs) have been introduced in millimeter wave (mmWave) device to device (D2D) communication scenarios to provide seamless connection and high data rate to a pair of proximity users. However, such high data rate can be achieved, only if the concerned device pair resides in close proximity and a direct line of sight (LoS) link exists between them. The proximity and the LoS link is necessary because of the high propagation and penetration losses of the mmWaves. The direct LoS link between a pair of devices may be blocked easily by static obstacles like buildings and trees. If there is no such direct LoS link between a pair of devices, we can use RIS to form an indirect LoS link between them. However, in that case, proper placement of RISs is necessary to provide such indirect LoS link. In this work, we develop a RIS placement strategy to serve those device pairs who do not have any direct LoS links. In order to provide an indirect LoS link for a requesting device pair, we first use some basic ideas from computational geometry to find out the candidate zones for placing RISs. Next we find the candidate zones for all such requesting device pairs considering the fact that two or more candidate zones may overlap and create a new candidate zone. We construct a graph where each candidate zone represents a vertex and there exist an edge between two overlapping candidate zones. We convert the RIS placement problem to a clique partitioning problem of the graph and use a greedy algorithm to get a near optimal solution. From simulation results, we can see that the strategically placed RISs give better performance in comparison to an existing deployment strategy, which places RISs only on the walls of the building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari, R., et al.: 5G D2D networks: techniques, challenges, and future prospects. IEEE Syst. J. 12(4), 3970–3984 (2017)

    Article  Google Scholar 

  2. Hoppe, R., Wolfle, G., Landstorfer, F.: Measurement of building penetration loss and propagation models for radio transmission into buildings. In: Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No. 99CH36324), vol. 4, pp. 2298–2302. IEEE (1999)

    Google Scholar 

  3. Qiao, J., Shen, X.S., Mark, J.W., Shen, Q., He, Y., Lei, L.: Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Commun. Mag. 53(1), 209–215 (2015)

    Article  Google Scholar 

  4. ElMossallamy, M.A., Zhang, H., Song, L., Seddik, K.G., Han, Z., Li, G.Y.: Reconfigurable intelligent surfaces for wireless communications: principles, challenges, and opportunities. IEEE Trans. Cognit. Commun. Networking 6(3), 990–1002 (2020)

    Article  Google Scholar 

  5. Kishk, M.A., Alouini, M.-S.: Exploiting randomly located blockages for large-scale deployment of intelligent surfaces. IEEE J. Sel. Areas Commun. 39(4), 1043–1056 (2020)

    Article  Google Scholar 

  6. Liaskos, C., Tsioliaridou, A., et al.: Initial UML definition of the hypersurface programming interface and virtual functions. Europ. Commiss. Project VISORSURF: Accept. Public Deliverable D 2, 18008–18011 (2017)

    Google Scholar 

  7. Deb, S., Ghosh, S.C.: An RIS deployment strategy to overcome static obstacles in millimeter wave D2D communication. In: 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2021)

    Google Scholar 

  8. Chen, J., Liang, Y.-C., Cheng, H.V., Yu, W.: Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems. arXiv preprint arXiv:1912.03619 (2019)

  9. Raj, S.M.G., Bala, G.J., Sajin, M.M.: 2D discrete cosine transform based channel estimation for single user millimeter wave communication system. J. Commun. 15(2), 205–213 (2020)

    Article  Google Scholar 

  10. Dong, J., Zhang, W., Yang, B., Sang, X.: WSDSBL method for wideband channel estimation in millimeter-wave MIMO systems with lens antenna array. J. Commun. 15(11), 826–832 (2020)

    Article  Google Scholar 

  11. Di Renzo, M., et al.: Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 1, 798–807 (2020)

    Article  Google Scholar 

  12. Tang, W., et al.: Path loss modeling and measurements for reconfigurable intelligent surfaces in the millimeter-wave frequency band. IEEE Trans. Commun. 70, 1 (2022)

    Google Scholar 

  13. Sandi, E., Rusmono, A.D., Diamah, A., Vinda, K.: Ultra-wideband microstrip array antenna for 5G millimeter-wave applications. J. Commun. 15(2), 198–204 (2020)

    Article  Google Scholar 

  14. X. Tan, Sun, Z., Koutsonikolas, D., Jornet, J.M.: Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 270–278. IEEE (2018)

    Google Scholar 

  15. Jia, S., Yuan, X., Liang, Y.-C.: Reconfigurable intelligent surfaces for energy efficiency in D2D communication network. IEEE Wireless Commun. Lett. 10(3), 683–687 (2020)

    Article  Google Scholar 

  16. He, J., Wymeersch, H., Kong, L., Silvén, O., Juntti, M.: Large intelligent surface for positioning in millimeter wave MIMO systems. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–5. IEEE (2020)

    Google Scholar 

  17. Chen, Y., et al.: Reconfigurable intelligent surface assisted device-to-device communications. IEEE Trans. Wireless Commun. 20(5), 2792–2804 (2020)

    Article  Google Scholar 

  18. Cai, C., Yang, H., Yuan, X., Zhang, Y.-J.A., Liu, Y.: Reconfigurable intelligent surface assisted D2D underlay communications: a two-timescale optimization design. J. Commun. Inf. Networks 5(4), 369–380 (2020)

    Article  Google Scholar 

  19. De Berg, M.C.: “Kreveld m. and overmars m. 2008.” Computational Geometry Algorithms and Applications 3rd Ed. Springer-Verlag. de Berg M. Cheong O. Kreveld M. and Overmars M (2008). https://doi.org/10.1007/978-3-540-77974-2

  20. Dessmark, A., Jansson, J., Lingas, A., Lundell, E.-M., Persson, M.: On the approximability of maximum and minimum edge clique partition problems. Int. J. Found. Comput. Sci. 18(02), 217–226 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Al-Hourani, A., Chandrasekharan, S., Kandeepan, S.: Path loss study for millimeter wave device-to-device communications in urban environment. In: 2014 IEEE International Conference on Communications Workshops (ICC), pp. 102–107. IEEE (2014)

    Google Scholar 

  22. Singh, D., Ghosh, S.C.: Mobility-aware relay selection in 5G D2D communication using stochastic model. IEEE Trans. Veh. Technol. 68(3), 2837–2849 (2019)

    Article  Google Scholar 

  23. Peng, Z., Li, T., Pan, C., Ren, H., Xu, W., Di Renzo, M.: Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI. IEEE Trans. Veh. Technol. 70(4), 3897–3901 (2021)

    Article  Google Scholar 

  24. Nemati, M., Park, J., Choi, J.: RIS-assisted coverage enhancement in millimeter-wave cellular networks. IEEE Access 8, 188171–188185 (2020)

    Article  Google Scholar 

  25. Chen, Y., Wang, Y., Zhang, J., Li, Z.: Resource allocation for intelligent reflecting surface aided vehicular communications. IEEE Trans. Veh. Technol. 69(10), 12321–12326 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmikanta Sau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sau, L., Ghosh, S.C. (2023). A Geometry-Based Strategic Placement of RISs in Millimeter Wave Device to Device Communication. In: Neri, F., Du, KL., Varadarajan, V., San-Blas, AA., Jiang, Z. (eds) Computer and Communication Engineering. CCCE 2023. Communications in Computer and Information Science, vol 1823. Springer, Cham. https://doi.org/10.1007/978-3-031-35299-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35299-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35298-0

  • Online ISBN: 978-3-031-35299-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics