Skip to main content

The Nitrogen Effects on Growth and Development of Morphological Parameters of “Argania Spinosa L. skeel” Tree Seedlings

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 713))

  • 232 Accesses

Abstract

The all-alone sapotaceae “Argania spinosa L. skeel”, Moroccan endemic tree since the tertiary era where, the unique place in all the world incorporated in the regional tradition, is qualified as an oleo-agrosylvo-pastoral tree. It has a lot of uses especially socioeconomic for the southern people. This tree, which was ubiquitous in the past than nowadays, recently its adaptation decrease achieved till about 800 000 ha superficies of semi-arid, arid, and desert bioclimate. The domestication is a solution assumed to face the argan desertification. For that aim, the present paper focuses on the nitrogen (N) effects on growth and development of “Argania spinosa L. skeel” tree seedlings morphological characteristics. The outcomes obtained mentioned that the argan seedlings’ morphology grew and developed very highly significantly different depending on the N rate. In plus the control seven (7) different N doses (0, 50, 100, 150, 200, 250, and 300%) were choose referring to the interval salt minerals needs of woody plants by using a modified nutrient solution composition. The highest means collected, are: the leaves number (150.3), the epicotyl height (37.97 cm), the epicotyl height increase (4.003 cm/month), the collar-diameter (3.66 mm), the shoot and root fresh matter (5663.73 and 6268.58 mg) respectively, the total fresh matter (11932.3 mg), the shoot and root dry matter (4204.9 and 2216.65 mg) respectively, the SDM: RDM ratio (1.89), and the Dickson’s quality index (0.52), highlight that 150% of N is highly significantly the best level. In the opposite side, N deficiency (0%) is the worst treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maathuis, F.J.M.: Physiological functions of mineral macronutrients. Plant Biol. 12, 250–258 (2009). Physiology and metabolism, Elsevier, David, S., Williams, L., https://doi.org/10.1016/j.pbi.2009.04.003

  2. Maathuis, F.J.M., Diatloff, E.: Roles and functions of plant mineral nutrients. In: Maathuis, F. (ed.) Plant Mineral Nutrients: Methods and Protocols, Methods in Molecular Biology, vol. 953, pp: 1–21. Springer, Cham (2013). https://doi.org/10.1007/978-1-62703-152-3_1

  3. Lopez-Bucio, J., Cruz-Ramirez, A., Herrera-Estrella, L.: The role of nutrient availability in regulating root architecture. Current Opinion Plant Biol. 6, 280–287 (2003).. Elsevier, Smith, A., Mary Lou Guerinot, M. L. https://doi.org/10.1016/S1369-5266(03)00035-9

  4. Herrera, L.F.R., Michael, W. Shane, M.W., López-Bucio, J.: Nutritional regulation of root development. WIREs Dev. Biol. (2015). https://doi.org/10.1002/wdev.183

  5. Iqbal, N., Trivellini, A., Masood, A., Ferrante, A., Khan, N. A.: Current understanding on ethylene signaling in plants: The influence of nutrient availability. Plant Physiology and Biochemistry, Volume 73, pp: 128–138. Elsevier, Masson SAS. ScienceDirect (2013). https://doi.org/10.1016/j.plaphy.2013.09.011

  6. Wang, M., Ding, L., Gao, L., Li, Y., Shen, Q., Guo, S.: The interactions of aquaporins and mineral nutrients in higher plants. Int. J. Molecular Sci. 17, 1229, pp: 1–16. MDPI (2016). https://doi.org/10.3390/ijms17081229

  7. Uscola, M., VillarSalvador, P., Gross, P., Maillard, P.: Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees. Ann. Bot. 115, 1001–1013 (2015). https://doi.org/10.1093/aob/mcv019

    Article  Google Scholar 

  8. Kozlowski, T.T., Pallardy, S.G.: Seed germination and seedling growth. In: Growth Control in Woody Plants, pp. 14–72. Academic Press, Elsevier, San Diego (1997). https://doi.org/10.1016/B978-012424210-4/50002-4

  9. Kozlowski, T.T., Pallardy, S.G.: Environmental regulation of vegetative growth. In: Growth Control in Woody Plants, pp. 195–322. Academic Press, Elsevier, San Diego (1997). https://doi.org/10.1016/B978-012424210-4/50005-X

  10. Kozlowski, T.T., Pallardy, S.G.: Physiological regulation of vegetative growth. In: Growth Control in Woody Plants, pp. 73–165. Academic Press, Elsevier, San Diego (1997). https://doi.org/10.1016/B978-012424210-4/50005-X

  11. Groover, A., Robischon, M.: Developmental mechanisms regulating secondary growth in woody plants. Curr. Opin. Plant Biol. 9, 55–58 (2006). https://doi.org/10.1016/j.pbi.2005.11.013

    Article  Google Scholar 

  12. Shmulsky, R., Jones, P.D.: Tree growth and production of woody tissu. In: Forest Products and Wood Science, pp. 1–20. Wiley, Chichester (2019). https://doi.org/10.1002/9781119426400.ch1

  13. Chandregowda, M., Murthy, K., Bagchi, S.: Woody shrubs increase soil microbial functions and multifunctionality in a tropical semi-arid grazing ecosystem. J. Arid Environ. 155, 65–72 (2018). https://doi.org/10.1016/j.jaridenv.2018.02.006

  14. Breman, H., Kessler, J.-J.: The influence of woody plants on plant production factors. In: Woody Plants in Agro-Ecosystems of Semi-Arid Regions.AGRICULTURAL,vol. 23, pp. 98–265. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79207-6_4

  15. Pallardy, S.G.: Vegetative growth. In: Physiology of Woody Plants, 3rd edn., pp. 39–86. Elsevier (2008). https://doi.org/10.1016/B978-012088765-1.50004-X

  16. Aguilar-Santelises, R., del Castillo, R.F.: Factors affecting woody plant species diversity of fragmented seasonally dry oak forests in the Mixteca Alta, Oaxaca. Mexico. Rev. Mex. Biodivers. 84, 575–590 (2013). https://doi.org/10.7550/rmb.30458

    Article  Google Scholar 

  17. M’Hirit, O., Benzyane, M., Benchekroun, F., El Yousfu, S.M., Bendaanoun, M.: Argan tree: a fruit forest specie with multiple usages, vol. 1, p. 150. Pierre Mardaga, Belgique (1998). (in French)

    Google Scholar 

  18. Msanda, F., Aboudi, A.E., Peltier, J.-P.: Biodiversity and biogeography of the Moroccan argan forest. Agric. Netbooks 14, 357–364 (2005). (In French)

    Google Scholar 

  19. Naggar, M., M’Hirit, O.: The argan forest is a typical course of arid and semi-arid Moroccan zones. Sécheresse 17, 314–317 (2006). (In French)

    Google Scholar 

  20. Martin, J., Faouzi, H.: The sustainability of the Moroccan argan grove development, p. 91 (2012). (in French)

    Google Scholar 

  21. Nouaïm, R., Echairi, A., Kaaya, M., Chaussod, R.: Contribution of the domestication of the argan tree for the oil production. Agric. Notebooks 16, 199–204 (2007). (In French)

    Google Scholar 

  22. Simone, Y.C.: The anthropized dune geosystem of Essaouira-Est (Atlantic Morocco): dynamics and palaeo environments, p. 200 (2007). (in French)

    Google Scholar 

  23. AitAabd, N.: Contribution of phenotypic and molecular markers for the analysis of the genetic variability of the argan tree preselection for oil yield, p. 165. University Ibn Zohr, Agadir, Thesis (2013). (in French)

    Google Scholar 

  24. Anne, P.: Sur le dosage rapide du carbone organique des sols. Ann. Agron. 15, 161–172 (1945)

    Google Scholar 

  25. Olsen, S.R.: Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Dep. Agric., Circular no. 939, Washington, D.C., p. 22 (1954)

    Google Scholar 

  26. Bremner, J.M.: Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55, 11–33 (1960). https://doi.org/10.1017/S0021859600021572

    Article  Google Scholar 

  27. Jaenicke, H.: Good practices of culture in forest nursery, p. 93 (2006). (in French)

    Google Scholar 

  28. Lamhamedi, M.S., Fecteau, B., Godin, L., Gingras, C.: Practical guide of soilless production for forest, pastoral and ornamental plants in Tunis, p. 114 (2006). (in French)

    Google Scholar 

  29. Ferradous, A., Hafidi,M.: Argan ’Argania spinosa’ plants production inMorocco: the choiceof container and substrate. BOIS FORETS Trop. 334, 37–47 (2018). https://doi.org/10.19182/bft2017.334.a31490.(in French)

  30. Lamhamedi, M.S., Ammari, Y., Fecteau, B., Fortin, J.A., Margolis, H.: Forest nursery problematic and development startegies. (In French). Agric. Notebooks 9, 369–380 (2000)

    Google Scholar 

  31. Dickson, A., Leaf, A.L., Hosner, J.F.: Seedling quality-Soil fertility relationships of white spruce, and red, and white pine in nurseries. For. Chron. 36, 237–241 (1960). https://doi.org/10.5558/tfc36237-3

    Article  Google Scholar 

  32. Binotto,A.F., Lúcio, A.D.C., Lopes, S.J.: The Dickson quality index in forest seedlings.Cerne Lavras 16, 457–464 (2010)

    Google Scholar 

  33. Nyoka, B.I., et al.: Quality of tree seedlings produced in nurseries in Malawi: an assessment of morphological attributes. For. Trees Livelihoods 27, 103–117 (2018). https://doi.org/10.1080/14728028.2018.1443027

    Article  Google Scholar 

  34. Jaenicke, H.: Good tree nursery practices: practical guidlines for research nurseries. ICRAF, Nairobi, p. 94 (1999)

    Google Scholar 

  35. Bonomelli, C., Celis, V., Schiappacasse, F.: Substrate effects on vegetative and reproductive growth of Ornithogalum thyrsoides “Royal Beauty.” J. Plant Nutr. 40, 2669–2679 (2017). https://doi.org/10.1080/01904167.2017.1381715

    Article  Google Scholar 

  36. Wood, S.W., Ward, C., Bowman, D.M.J.S.: Substrate controls growth rates of the woody pioneer Leptospermum lanigerum colonizing montane grasslands in northern Tasmania: encroachment and growth in grasslands. Austral Ecol. 42, 9–19 (2017). https://doi.org/10.1111/aec.12390

    Article  Google Scholar 

  37. Bretzel, F., et al.: Use of coarse substrate to increase the rate of water infiltration and the bearing capacity in tree plantings. Ecol. Eng. 148, 105798–105805 (2020). https://doi.org/10.1016/j.ecoleng.2020.105798

    Article  Google Scholar 

  38. Lopez-Iglesias, B., Olmo, M., Gallardo, A., Villar, R.: Short-term effects of litter from 21 woody species on plant growth and root development. Plant Soil 381(1–2), 177–191 (2014). https://doi.org/10.1007/s11104-014-2109-6

    Article  Google Scholar 

  39. Kozlowski, T.T.: Responses of woody plants to flooding and salinity. Tree Physiol. Monograph. 17, 490–518 (1997). https://doi.org/10.1093/treephys/17.7.490

    Article  Google Scholar 

  40. Gregory, P.J.: Plant Roots: Growth, Activity, and Interaction with Soils, p. 340. Blackwell Pub, Oxford, Ames (2006)

    Google Scholar 

  41. Parra, A., Zornoza, R., Conesa, E., Faz, A., GómezLópez, M.D.: Nutritional status and its interaction with soil properties and trace elements in six Mediterranean shrub species grown in reclaimed pyritic tailings. Ecol. Eng. 109, 25–34 (2017). https://doi.org/10.1016/j.ecoleng.2017.08.027

    Article  Google Scholar 

  42. Scalon, S.P.Q., Jeromini, T.S., Mussury, R.M., Dresch, D.M.: Photosynthetic metabolism and quality of Eugenia pyriformis Cambess. Seedlings on substrate function and water levels. An. Acad. Bras. Ciênc. 86, 2039–2048 (2014). https://doi.org/10.1590/0001-3765201420130249

  43. Souza, A. das G., Smiderle, O.J., Montenegro, R.A., Moriyama, T.K., Dias, T.J.: Controlledrelease fertiliser and substrates on seedling growth and quality in Agonandra brasiliensis in Roraima. J. Agric. Stud. 8, 70–80 (2020). https://doi.org/10.5296/jas.v8i3.16363

  44. Lim, H., Jamtgard, S., Oren, R., Gruffman, L., Sabine Kunz, S., Näsholm, T.: Organic nitrogen enhances nitrogen nutrition and early growth of Pinus sylvestris seedlings. Tree Physiol. 42, 513–522 (2022). Oxford University Press, https://doi.org/10.1093/treephys/tpab127

  45. Lucander, K., Zanchi, G., Akselsson, C., Belyazid, S.: The effect of nitrogen fertilization on tree growth, soil organic carbon and nitrogen leaching—a modeling study in a steep nitrogen deposition gradient in Sweden. Forests 12, 298, 20 pages (2021). https://doi.org/10.3390/f12030298

  46. Zhu, H., Zhao, J., Gong, L.: The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest. Scientific Reports Volume 11: 3839, 12 pages, natureportfolio (2021). https://doi.org/10.1038/s41598-021-83151-x

  47. Chang, K.H., Wu, R.Y., Chang, G.P., Hsieh, T.F., Chung, R.S.: Effects of Nitrogen Concentration on Growth and Nutrient Uptake of Anthurium andraeanum Lind. Cultivated in Coir under Different Seasonal Conditions. HORTSCIENCE 47(4), 515–521 (2012). soil management, fertilization, and irrigation (2012)

    Google Scholar 

  48. Colpaert, B., Steppe, k., Gomand, A., Vanhoutte, B., Remy, S., Boeckx, P.: Experimental approach to assess fertilizer nitrogen use, distribution, and loss in pear fruit trees. Plant Physiol. Biochem. 165, 207–216, Elsevier (2021). https://doi.org/10.1016/j.plaphy.2021.05.019

  49. Omari, F.E., Beniken, L., Gaboune, F., Zouahri, A., Benkirane, R., Benyahia, H.: Effect of nitrogen level on morphological and physiological parameters of citrus rootstocks. J. Appl. Biosci. 53, 3773–3786 (2012). ResearchGate

    Google Scholar 

  50. Metay, A., Magnier, J., Guilpart, N., Christophe, A.: Nitrogen supply controls vegetative growth, biomass, and nitrogen allocation for grapevine (cv. Shiraz) grown in pots. Funct. Plant Biol. 42, 105–114 (2015). Journal compilation, CSIRO, https://doi.org/10.1071/FP14062

  51. Zenawi, G., Mizan, A.: Effect of Nitrogen Fertilization on the Growth and Seed Yield of Sesame (Sesamum indicum L.). Int. J. Agron. 2019, 1–7 (2019). Article ID 5027254, Handawi https://doi.org/10.1155/2019/5027254

  52. Wu, Y., Sun, M., Liu, J., Wang, W., Liu, S.: Fertilizer and soil nitrogen utilization of pear trees as affected by the timing of split fertilizer application in rain-fed orchard. Scientia Horticult. 252, 363–369, Elsevier (2019). https://doi.org/10.1016/j.scienta.2019.04.005

  53. Selassie, Y. G.: The effect of N fertilizer rates on agronomic parameters, yield components and yields of maize grown on Alfisols of North‑western Ethiopia. Environmental System Res. 4:21, 1–7 (2015). https://doi.org/10.1186/s40068-015-0048-8

  54. Rocha, J.S., Calzavara, A.K., Bianchini, E., Pimenta, J.A., Stolf-Moreira, R., Oliveira, H.C.: Nitrogen supplementation improves the high-light acclimation of Guazuma ulmifolia Lam. seedlings. Trees 33(2), 421–431 (2018). https://doi.org/10.1007/s00468-018-1788-7

    Article  Google Scholar 

  55. Regni, L., Proietti, P.: Effects of nitrogen foliar fertilization on the vegetative and productive performance of the olive tree and on oil quality. Agriculture 9, 252; 8 pages, MDPI (2019). https://doi.org/10.3390/agriculture9120252

  56. Othman, Y.A., Leskovar, D.: Nitrogen management influenced root length intensity of young olive trees. Scientia Horticult. 246, 726–733 (2019). https://doi.org/10.1016/j.scienta.2018.11.052

  57. Leskovar, D., Othman, Y. A.: Nitrogen management for improving root and shoot components of Young ‘Arbequina’ Olives. HORTSCIENCE 54(1), 175–180 (2019). https://doi.org/10.21273/HORTSCI13397-18

  58. Jing, H., Zhou, H., Wang, G., Xue, S., Liu, G., Duan, M.: Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings. Frontiers in Plant Science, Rewald, B., Functional Plant Ecol. 8, 1922, 11 pages, (2017). https://doi.org/10.3389/fpls.2017.01922

  59. Arrobas, M., Ribeiro, A., Barreales, D., Pereira, E.L.M., Rodrigues, M.A.: Soil and foliar nitrogen and boron fertilization of almond trees grown under rainfed conditions. Eur. J. Agron. 106, 39–48 (2019). https://doi.org/10.1016/j.eja.2019.02.014

  60. Chen, G., et al.: Physiological and Nutritional Responses of Pear Seedlings to Nitrate Concentrations. Frontiers in Plant Science, Escobar-Gutérrez, A. J., Crop and Product Physiology, Volume 9 :1679, 11 pages (2018). https://doi.org/10.3389/fpls.2018.01679

  61. Li, H., et al.: N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. J. Exp. Bot. 63, 695–709 (2012). https://doi.org/10.1093/jxb/ers271

    Article  Google Scholar 

  62. Mirabdulbaghi, M., Pishbeen, M.: Effect of different forms and levels of nitrogen on vegetative growth and leaf nutrient status of nursery seedling rootstocks of peach. Am. J. Plant Nut. Fertilizat. Technol. 2(2), 32–44, Academic Journals Inc. (2012). https://doi.org/10.3923/ajpnft.2012.32.44

  63. Eser, Y., Gulcu, S.: The effects of growing density and fertilization on morphological seedling characteristics of crimean juniper (Juniperus excelsa Bieb.). Turkish J. Forestry, Dergisi, T. O. 20(1), 15–19 (2019). http s :// doi.org/10. 1018182 /tjf.483157

    Google Scholar 

  64. Farhoune, H., Medarheri, A. M., Cherkaoui, S.: Substrate type effects on vegetative growth and development of “Argania spinosa L. skeel” tree seedlings. Springer Nature Switzerland AG, Kacprzyk, J., et al. (Eds): AI2SD 2020, AISC 1417, pp. 1–15 (2022). https://doi.org/10.1007/978-3-030-90633-7_36

Download references

Acknowledgments

My all thanks after Allah are sent to my family whose financed my work studies and encourage me to go ahead and progress in my study, and to Mohamed V Faculty of Sciences in Rabat, for given me a space in the garden and inside the laboratory of biotechnology, biology, and plant physiology, where I am studding and doing my all-assays research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassania Farhoune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farhoune, H., Cherkaoui, S. (2023). The Nitrogen Effects on Growth and Development of Morphological Parameters of “Argania Spinosa L. skeel” Tree Seedlings. In: Kacprzyk, J., Ezziyyani, M., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development. AI2SD 2022. Lecture Notes in Networks and Systems, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-35248-5_18

Download citation

Publish with us

Policies and ethics