Skip to main content

Pathophysiology of Obstructive Sleep Apnea

  • Chapter
  • First Online:
Obstructive Sleep Apnea

Abstract

On the path to personalized medicine for obstructive sleep apnea (OSA) patients, it is crucial to understand the underlying causes (endotypes) of the diseases. Characterizing and understanding the pathophysiology of OSA can aid in providing the optimal treatment for each patient. This chapter overviews the different pathophysiological traits, their measurement methods and implications for OSA treatment outcomes and adherence.

  • There are five critical pathophysiological OSA traits: site(s) and pattern(s) of upper airway collapse, upper airway collapsibility, ventilatory control stability (loop gain), muscle responsiveness and arousal threshold.

  • All these traits can be measured using a gold-standard technique involving overnight measurements and/or upper airway pressure manipulations.

  • Only the site(s) and pattern(s) of upper airway collapse can be assessed in routine clinical practice using drug-induced sleep endoscopy (DISE), which is currently used for patient selection.

  • Noninvasive techniques are emerging. The methods are promising yet require prospective validation in large cohorts.

  • OSA pathophysiological traits are helpful for treatment selection purposes. Besides DISE, the noninvasive techniques, e.g., based on sleep study data, hold promise as a patient selection tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.

    Article  CAS  PubMed  Google Scholar 

  2. Edwards BA, Redline S, Sands SA, Owens RL. More than the sum of the respiratory events: personalized medicine approaches for obstructive sleep apnea. Am J Respir Crit Care Med. 2019;200(6):691–703.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zinchuk AV, Gentry MJ, Concato J, Yaggi HK. Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep Med Rev. 2017;35:113–23.

    Article  PubMed  Google Scholar 

  4. Wellman A, Eckert DJ, Jordan AS, Edwards BA, Passaglia CL, Jackson AC, et al. A method for measuring and modeling the physiological traits causing obstructive sleep apnea. J Appl Physiol (1985). 2011;110(6):1627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188(8):996–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Borowiecki B, Pollak CP, Weitzman ED, Rakoff S, Imperato J. Fibro-optic study of pharyngeal airway during sleep in patients with hypersomnia obstructive sleep-apnea syndrome. Laryngoscope. 1978;88(8 Pt 1):1310–3.

    Article  CAS  PubMed  Google Scholar 

  7. Van den Bossche K, Van de Perck E, Kazemeini E, Willemen M, Van de Heyning PH, Verbraecken J, et al. Natural sleep endoscopy in obstructive sleep apnea: a systematic review. Sleep Med Rev. 2021;60:101534.

    Article  PubMed  Google Scholar 

  8. De Vito A, Carrasco Llatas M, Ravesloot MJ, Kotecha B, De Vries N, Hamans E, et al. European position paper on drug-induced sleep endoscopy: 2017 update. Clin Otolaryngol. 2018;43(6):1541–52.

    Article  PubMed  Google Scholar 

  9. De Vito A, Carrasco Llatas M, Vanni A, Bosi M, Braghiroli A, Campanini A, et al. European position paper on drug-induced sedation endoscopy (DISE). Sleep Breath. 2014;18(3):453–65.

    Article  PubMed  Google Scholar 

  10. Safiruddin F, Koutsourelakis I, de Vries N. Analysis of the influence of head rotation during drug-induced sleep endoscopy in obstructive sleep apnea. Laryngoscope. 2014;124(9):2195–9.

    Article  PubMed  Google Scholar 

  11. Vroegop AV, Vanderveken OM, Boudewyns AN, Scholman J, Saldien V, Wouters K, et al. Drug-induced sleep endoscopy in sleep-disordered breathing: report on 1249 cases. Laryngoscope. 2014;124(3):797–802.

    Article  PubMed  Google Scholar 

  12. Vroegop A. Drug-induced sleep endoscopy in patients with sleep-disordered breathing: a patient selection tool for surgical and mandibular advancement therapies. Antwerpen: Universiteit Antwerpen; 2013.

    Google Scholar 

  13. Verbruggen AER, Vroegop AVMT, Dieltjens M, Wouters K, Kastoer C, De Backer WA, et al. Predicting therapeutic outcome of mandibular advancement device treatment in obstructive sleep apnoea (PROMAD): study design and baseline characteristics. J Dent Sleep Med. 2016;03(04):119–38.

    Article  Google Scholar 

  14. Park D, Kim JS, Heo SJ. Obstruction patterns during drug-induced sleep endoscopy vs natural sleep endoscopy in patients with obstructive sleep apnea. JAMA Otolaryngol Head Neck Surg. 2019;145(8):730–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Genta PR, Sands SA, Butler JP, Loring SH, Katz ES, Demko BG, et al. Airflow shape is associated with the pharyngeal structure causing OSA. Chest. 2017;152(3):537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Op de Beeck S, Van de Perck E, Vena D, Kazemeini E, Dieltjens M, Willemen M, et al. Flow-identified site of collapse during drug-induced sleep endoscopy: feasibility and preliminary results. Chest. 2021;159(2):828–32.

    Article  Google Scholar 

  17. Azarbarzin A, Marques M, Sands SA, Op de Beeck S, Genta PR, Taranto-Montemurro L, et al. Predicting epiglottic collapse in patients with obstructive sleep apnoea. Eur Respir J. 2017;50(3):1700345.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Azarbarzin A, Sands SA, Marques M, Genta PR, Taranto-Montemurro L, Messineo L, et al. Palatal prolapse as a signature of expiratory flow limitation and inspiratory palatal collapse in patients with obstructive sleep apnoea. Eur Respir J. 2018;51(2):1–11.

    Article  Google Scholar 

  19. Op de Beeck S, Vena D, Mann D, Azarbarzin A, Gell L, Van de Perck E, et al. Polysomnographic airflow shapes and site of collapse during drug-induced sleep endoscopy. In: ATS international conference. San Francisco; 2022.

    Google Scholar 

  20. Sforza E, Bacon W, Weiss T, Thibault A, Petiau C, Krieger J. Upper airway collapsibility and cephalometric variables in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2000;161(2 Pt 1):347–52.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz AR, Gold AR, Schubert N, Stryzak A, Wise RA, Permutt S, et al. Effect of weight loss on upper airway collapsibility in obstructive sleep apnea. Am Rev Respir Dis. 1991;144(3 Pt 1):494–8.

    Article  CAS  PubMed  Google Scholar 

  22. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis. 1991;143(6):1300–3.

    Article  CAS  PubMed  Google Scholar 

  23. Penzel T, Moller M, Becker HF, Knaack L, Peter JH. Effect of sleep position and sleep stage on the collapsibility of the upper airways in patients with sleep apnea. Sleep. 2001;24(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  24. Ong JS, Touyz G, Tanner S, Hillman DR, Eastwood PR, Walsh JH. Variability of human upper airway collapsibility during sleep and the influence of body posture and sleep stage. J Sleep Res. 2011;20(4):533–7.

    Article  PubMed  Google Scholar 

  25. Boudewyns A, Punjabi N, Van de Heyning PH, De Backer WA, O'Donnell CP, Schneider H, et al. Abbreviated method for assessing upper airway function in obstructive sleep apnea. Chest. 2000;118(4):1031–41.

    Article  CAS  PubMed  Google Scholar 

  26. Issa FG, Sullivan CE. Upper airway closing pressures in obstructive sleep apnea. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(2):520–7.

    CAS  PubMed  Google Scholar 

  27. Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. Sleep. 2016;39(3):511–21.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rowley JA, Zhou X, Vergine I, Shkoukani MA, Badr MS. Influence of gender on upper airway mechanics: upper airway resistance and Pcrit. J Appl Physiol (1985). 2001;91(5):2248–54.

    Article  CAS  PubMed  Google Scholar 

  29. Jordan AS, Wellman A, Edwards JK, Schory K, Dover L, MacDonald M, et al. Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. J Appl Physiol (1985). 2005;99(5):2020–7.

    Article  PubMed  Google Scholar 

  30. Wellman A, Genta PR, Owens RL, Edwards BA, Sands SA, Loring SH, et al. Test of the Starling resistor model in the human upper airway during sleep. J Appl Physiol (1985). 2014;117(12):1478–85.

    Article  PubMed  Google Scholar 

  31. Schwartz AR, Smith PL. CrossTalk proposal: the human upper airway does behave like a Starling resistor during sleep. J Physiol. 2013;591(9):2229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwartz AR, Smith PL, Wise RA, Gold AR, Permutt S. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J Appl Physiol (1985). 1988;64(2):535–42.

    Article  CAS  PubMed  Google Scholar 

  33. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol (1985). 1988;64(2):789–95.

    Article  CAS  PubMed  Google Scholar 

  34. Permutt S, Riley RL. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18:924–32.

    Article  CAS  PubMed  Google Scholar 

  35. Butler JP, Owens RL, Malhotra A, Wellman A. CrossTalk opposing view: the human upper airway during sleep does not behave like a Starling resistor. J Physiol. 2013;591(9):2233–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Owens RL, Edwards BA, Sands SA, Butler JP, Eckert DJ, White DP, et al. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway. J Appl Physiol (1985). 2014;116(8):1105–12.

    Article  PubMed  Google Scholar 

  37. Osman AM, Carberry JC, Burke PGR, Toson B, Grunstein RR, Eckert DJ. Upper airway collapsibility measured using a simple wakefulness test closely relates to the pharyngeal critical closing pressure during sleep in obstructive sleep apnea. Sleep. 2019;42(7):zsz080.

    Article  PubMed  Google Scholar 

  38. Malhotra A, Pillar G, Fogel R, Beauregard J, Edwards J, White DP. Upper-airway collapsibility: measurements and sleep effects. Chest. 2001;120(1):156–61.

    Article  CAS  PubMed  Google Scholar 

  39. Landry SA, Joosten SA, Eckert DJ, Jordan AS, Sands SA, White DP, et al. Therapeutic CPAP level predicts upper airway collapsibility in patients with obstructive sleep apnea. Sleep. 2017;40(6):zsx056.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Genta PR, Schorr F, Edwards BA, Wellman A, Lorenzi-Filho G. Discriminating the severity of pharyngeal collapsibility in men using anthropometric and polysomnographic indices. J Clin Sleep Med. 2020;16(9):1531–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kazemeini E, Van de Perck E, Dieltjens M, Willemen M, Verbraecken J, Op de Beeck S, et al. Critical to know Pcrit: a review on pharyngeal critical closing pressure in obstructive sleep apnea. Front Neurol. 2022;13:775709.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Condos R, Norman RG, Krishnasamy I, Peduzzi N, Goldring RM, Rapoport DM. Flow limitation as a noninvasive assessment of residual upper-airway resistance during continuous positive airway pressure therapy of obstructive sleep apnea. Am J Respir Crit Care Med. 1994;150(2):475–80.

    Article  CAS  PubMed  Google Scholar 

  43. Wellman A, Edwards BA, Sands SA, Owens RL, Nemati S, Butler J, et al. A simplified method for determining phenotypic traits in patients with obstructive sleep apnea. J Appl Physiol (1985). 2013;114(7):911–22.

    Article  CAS  PubMed  Google Scholar 

  44. Kazemeini E, Van de Perck E, Dieltjens M, Willemen M, Verbraecken J, Sands SA, et al. Critical closing pressure of the pharyngeal airway during routine drug-induced sleep endoscopy: feasibility and protocol. J Appl Physiol (1985). 2022;132(4):925–37.

    Article  CAS  PubMed  Google Scholar 

  45. Azarbarzin A, Sands SA, Taranto-Montemurro L, Oliveira Marques MD, Genta PR, Edwards BA, et al. Estimation of pharyngeal collapsibility during sleep by peak inspiratory airflow. Sleep. 2017;40(1):zsw005.

    Article  PubMed  Google Scholar 

  46. Sands SA, Edwards BA, Terrill PI, Taranto-Montemurro L, Azarbarzin A, Marques M, et al. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2018;197(9):1187–97.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wellman A, Malhotra A, Jordan AS, Stevenson KE, Gautam S, White DP. Effect of oxygen in obstructive sleep apnea: role of loop gain. Respir Physiol Neurobiol. 2008;162(2):144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Messineo L, Taranto-Montemurro L, Azarbarzin A, Oliveira Marques MD, Calianese N, White DP, et al. Breath-holding as a means to estimate the loop gain contribution to obstructive sleep apnoea. J Physiol. 2018;596(17):4043–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Messineo L, Taranto-Montemurro L, Azarbarzin A, Marques M, Calianese N, White DP, et al. Loop gain in REM versus non-REM sleep using CPAP manipulation: a pilot study. Respirology. 2019;24(8):805–8.

    Article  PubMed  Google Scholar 

  51. Terrill PI, Edwards BA, Nemati S, Butler JP, Owens RL, Eckert DJ, et al. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography. Eur Respir J. 2015;45(2):408–18.

    Article  PubMed  Google Scholar 

  52. Joosten SA, Leong P, Landry SA, Sands SA, Terrill PI, Mann D, et al. Loop gain predicts the response to upper airway surgery in patients with obstructive sleep apnea. Sleep. 2017;40(7):zsx094.

    Article  Google Scholar 

  53. Carberry JC, Hensen H, Fisher LP, Saboisky JP, Butler JE, Gandevia SC, et al. Mechanisms contributing to the response of upper-airway muscles to changes in airway pressure. J Appl Physiol (1985). 2015;118(10):1221–8.

    Article  PubMed  Google Scholar 

  54. Berry RB, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep. 1997;20(8):654–75.

    Article  CAS  PubMed  Google Scholar 

  55. Berry RB, Kouchi K, Bower J, Prosise G, Light RW. Triazolam in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 1995;151(2 Pt 1):450–4.

    Article  CAS  PubMed  Google Scholar 

  56. Phillipson EA, Sullivan CE. Arousal: the forgotten response to respiratory stimuli. Am Rev Respir Dis. 1978;118(5):807–9.

    CAS  PubMed  Google Scholar 

  57. Edwards BA, Eckert DJ, McSharry DG, Sands SA, Desai A, Kehlmann G, et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2014;190(11):1293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sands SA, Terrill PI, Edwards BA, Taranto Montemurro L, Azarbarzin A, Marques M, et al. Quantifying the arousal threshold using polysomnography in obstructive sleep apnea. Sleep. 2018;41(1):zsx183.

    Article  PubMed  Google Scholar 

  59. Sforza E, Krieger J, Petiau C. Arousal threshold to respiratory stimuli in OSA patients: evidence for a sleep-dependent temporal rhythm. Sleep. 1999;22(1):69–75.

    CAS  PubMed  Google Scholar 

  60. Younes M. Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea. Am J Respir Crit Care Med. 2003;168(6):645–58.

    Article  PubMed  Google Scholar 

  61. Zinchuk A, Yaggi HK, Liang J, Chu J, de Beeck SO, Stepnowsky C, et al. Physiologic traits predict therapeutic pressure requirements and residual respiratory events among patients with coronary artery disease and obstructive sleep apnea. Am J Respir Crit Care. 2020;201:2.

    Google Scholar 

  62. Chan AS, Sutherland K, Schwab RJ, Zeng B, Petocz P, Lee RW, et al. The effect of mandibular advancement on upper airway structure in obstructive sleep apnoea. Thorax. 2010;65(8):726–32.

    Article  PubMed  Google Scholar 

  63. Vroegop AV, Vanderveken OM, Dieltjens M, Wouters K, Saldien V, Braem MJ, et al. Sleep endoscopy with simulation bite for prediction of oral appliance treatment outcome. J Sleep Res. 2013;22(3):348–55.

    Article  PubMed  Google Scholar 

  64. Chan AS, Lee RW, Srinivasan VK, Darendeliler MA, Grunstein RR, Cistulli PA. Nasopharyngoscopic evaluation of oral appliance therapy for obstructive sleep apnoea. Eur Respir J. 2010;35(4):836–42.

    Article  CAS  PubMed  Google Scholar 

  65. Okuno K, Sasao Y, Nohara K, Sakai T, Pliska BT, Lowe AA, et al. Endoscopy evaluation to predict oral appliance outcomes in obstructive sleep apnoea. Eur Respir J. 2016;47(5):1410–9.

    Article  PubMed  Google Scholar 

  66. Vanderveken OM, Van de Heyring PH, Braem MJ. Nasopharyngoscopy during wakefulness for predicting treatment outcome of OSA with mandibular advancement splints. Breathe. 2010;7(1):94–5.

    Article  Google Scholar 

  67. Marques M, Genta PR, Azarbarzin A, Taranto-Montemurro L, Messineo L, Hess LB, et al. Structure and severity of pharyngeal obstruction determine oral appliance efficacy in sleep apnoea. J Physiol. 2019;597(22):5399–410.

    Article  CAS  PubMed  Google Scholar 

  68. Op de Beeck S, Dieltjens M, Verbruggen AE, Vroegop AV, Wouters K, Hamans E, et al. Phenotypic labelling using drug-induced sleep endoscopy improves patient selection for mandibular advancement device outcome: a prospective study. J Clin Sleep Med. 2019;15(8):1089–99.

    Article  Google Scholar 

  69. Edwards BA, Andara C, Landry S, Sands SA, Joosten SA, Owens RL, et al. Upper-airway collapsibility and loop gain predict the response to oral appliance therapy in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2016;194(11):1413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tsuiki S, Kobayashi M, Namba K, Oka Y, Komada Y, Kagimura T, et al. Optimal positive airway pressure predicts oral appliance response to sleep apnoea. Eur Respir J. 2010;35(5):1098–105.

    Article  CAS  PubMed  Google Scholar 

  71. Bamagoos AA, Cistulli PA, Sutherland K, Madronio M, Eckert DJ, Hess L, et al. Polysomnographic endotyping to select patients with obstructive sleep apnea for oral appliances. Ann Am Thorac Soc. 2019;16(11):1422–31.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Op de Beeck S, Dieltjens M, Azarbarzin A, Willemen M, Verbraecken J, Braem MJ, et al. Mandibular advancement device treatment efficacy is associated with polysomnographic endotypes. Ann Am Thorac Soc. 2021;18(3):511–8.

    Article  Google Scholar 

  73. Bamagoos AA, Cistulli PA, Sutherland K, Ngiam J, Burke PGR, Bilston LE, et al. Dose-dependent effects of mandibular advancement on upper airway collapsibility and muscle function in obstructive sleep apnea. Sleep. 2019;42(6):zsz049.

    Article  PubMed  Google Scholar 

  74. Huang Y, White DP, Malhotra A. The impact of anatomic manipulations on pharyngeal collapse: results from a computational model of the normal human upper airway. Chest. 2005;128(3):1324–30.

    Article  PubMed  Google Scholar 

  75. Inazawa T, Ayuse T, Kurata S, Okayasu I, Sakamoto E, Oi K, et al. Effect of mandibular position on upper airway collapsibility and resistance. J Dent Res. 2005;84(6):554–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ng AT, Gotsopoulos H, Qian J, Cistulli PA. Effect of oral appliance therapy on upper airway collapsibility in obstructive sleep apnea. Am J Respir Crit Care Med. 2003;168(2):238–41.

    Article  PubMed  Google Scholar 

  77. Schwartz AR, Schubert N, Rothman W, Godley F, Marsh B, Eisele D, et al. Effect of uvulopalatopharyngoplasty on upper airway collapsibility in obstructive sleep apnea. Am Rev Respir Dis. 1992;145(3):527–32.

    Article  CAS  PubMed  Google Scholar 

  78. Van de Heyning PH, Badr MS, Baskin JZ, Cramer Bornemann MA, De Backer WA, Dotan Y, et al. Implanted upper airway stimulation device for obstructive sleep apnea. Laryngoscope. 2012;122(7):1626–33.

    Article  PubMed  Google Scholar 

  79. Vanderveken OM, Maurer JT, Hohenhorst W, Hamans E, Lin HS, Vroegop AV, et al. Evaluation of drug-induced sleep endoscopy as a patient selection tool for implanted upper airway stimulation for obstructive sleep apnea. J Clin Sleep Med. 2013;9(5):433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ong AA, Murphey AW, Nguyen SA, Soose RJ, Woodson BT, Vanderveken OM, et al. Efficacy of upper airway stimulation on collapse patterns observed during drug-induced sedation endoscopy. Otolaryngol Head Neck Surg. 2016;154(5):970–7.

    Article  PubMed  Google Scholar 

  81. Op de Beeck S, Wellman A, Dieltjens M, Strohl KP, Willemen M, Van de Heyning PH, et al. Endotypic mechanisms of successful hypoglossal nerve stimulation for obstructive sleep apnea. Am J Respir Crit Care Med. 2021;203(6):746–55.

    Article  Google Scholar 

  82. Koutsourelakis I, Safiruddin F, Ravesloot M, Zakynthinos S, de Vries N. Surgery for obstructive sleep apnea: sleep endoscopy determinants of outcome. Laryngoscope. 2012;122(11):2587–91.

    Article  PubMed  Google Scholar 

  83. Green KK, Kent DT, D'Agostino MA, Hoff PT, Lin H-S, Soose RJ, et al. Drug-induced sleep endoscopy and surgical outcomes: a multicenter cohort study. Laryngoscope. 2019;129(3):761–70.

    Article  CAS  PubMed  Google Scholar 

  84. Kastoer C, Op de Beeck S, Dom M, Neirinckx T, Verbraecken J, Braem MJ, et al. Drug-induced sleep endoscopy upper airway collapse patterns and maxillomandibular advancement. Laryngoscope. 2020;130(4):E268–E74.

    Article  CAS  PubMed  Google Scholar 

  85. Gaisl T, Haile SR, Thiel S, Osswald M, Kohler M. Efficacy of pharmacotherapy for OSA in adults: a systematic review and network meta-analysis. Sleep Med Rev. 2019;46:74–86.

    Article  PubMed  Google Scholar 

  86. Edwards BA, Sands SA, Eckert DJ, White DP, Butler JP, Owens RL, et al. Acetazolamide improves loop gain but not the other physiological traits causing obstructive sleep apnoea. J Physiol. 2012;590(5):1199–211.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fiori CZ, Martinez D, Montanari CC, Lopez P, Camargo R, Sezerá L, et al. Diuretic or sodium-restricted diet for obstructive sleep apnea—a randomized trial. Sleep. 2018;41(4):zsy016.

    Article  Google Scholar 

  88. Kubin L, Davies RO, Pack AI. Control of upper airway motoneurons during REM sleep. News Physiol Sci. 1998;13:91–7.

    PubMed  Google Scholar 

  89. Sood S, Liu X, Liu H, Nolan P, Horner RL. 5-HT at hypoglossal motor nucleus and respiratory control of genioglossus muscle in anesthetized rats. Respir Physiol Neurobiol. 2003;138(2–3):205–21.

    Article  CAS  PubMed  Google Scholar 

  90. Taranto-Montemurro L, Sands SA, Edwards BA, Azarbarzin A, Marques M, de Melo C, et al. Desipramine improves upper airway collapsibility and reduces OSA severity in patients with minimal muscle compensation. Eur Respir J. 2016;48(5):1340–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Taranto-Montemurro L, Edwards BA, Sands SA, Marques M, Eckert DJ, White DP, et al. Desipramine increases genioglossus activity and reduces upper airway collapsibility during non-REM sleep in healthy subjects. Am J Respir Crit Care. 2016;194(7):878–85.

    Article  CAS  Google Scholar 

  92. Eckert DJ, Owens RL, Kehlmann GB, Wellman A, Rahangdale S, Yim-Yeh S, et al. Eszopiclone increases the respiratory arousal threshold and lowers the apnoea/hypopnoea index in obstructive sleep apnoea patients with a low arousal threshold. Clin Sci (Lond). 2011;120(12):505–14.

    Article  PubMed  Google Scholar 

  93. Carberry JC, Grunstein RR, Eckert DJ. The effects of zolpidem in obstructive sleep apnea—an open-label pilot study. J Sleep Res. 2019;28:e12853.

    Article  PubMed  Google Scholar 

  94. Carberry JC, Fisher LP, Grunstein RR, Gandevia SC, McKenzie DK, Butler JE, et al. Role of common hypnotics on the phenotypic causes of obstructive sleep apnoea: paradoxical effects of zolpidem. Eur Respir J. 2017;50(6):1701344.

    Article  PubMed  Google Scholar 

  95. Carter SG, Berger MS, Carberry JC, Bilston LE, Butler JE, Tong BK, et al. Zopiclone increases the arousal threshold without impairing genioglossus activity in obstructive sleep apnea. Sleep. 2016;39(4):757–66.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sands SA, Edwards BA, Terrill PI, Butler JP, Owens RL, Taranto-Montemurro L, et al. Identifying obstructive sleep apnoea patients responsive to supplemental oxygen therapy. Eur Respir J. 2018;52(3):1800674.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Taranto-Montemurro L, Messineo L, Sands SA, Azarbarzin A, Marques M, Edwards BA, et al. The combination of atomoxetine and oxybutynin greatly reduces obstructive sleep apnea severity. A randomized, placebo-controlled, double-blind crossover trial. Am J Respir Crit Care Med. 2019;199(10):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Taranto-Montemurro L, Messineo L, Azarbarzin A, Vena D, Hess L, Calianese N, et al. Effects of the combination of atomoxetine and oxybutynin on obstructive sleep apnea endotypic traits. Chest. 2020;157:1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Edwards BA, Sands SA, Owens RL, Eckert DJ, Landry S, White DP, et al. The combination of supplemental oxygen and a hypnotic markedly improves obstructive sleep apnea in patients with a mild to moderate upper airway collapsibility. Sleep. 2016;39(11):1973–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Op de Beeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Op de Beeck, S., Van de Perck, E., Vanderveken, O.M. (2023). Pathophysiology of Obstructive Sleep Apnea. In: Baptista, P.M., Lugo Saldaña, R., Amado, S. (eds) Obstructive Sleep Apnea. Springer, Cham. https://doi.org/10.1007/978-3-031-35225-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35225-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35224-9

  • Online ISBN: 978-3-031-35225-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics