Skip to main content

Artificial Intelligence Approaches for Skin Anti-aging and Skin Resilience Research

  • 205 Accesses

Part of the Healthy Ageing and Longevity book series (HAL,volume 19)

Abstract

The skin is a complex organ whose functioning is affected by both environmental and intrinsic factors, making it a perfect model for studying the aging process at many different levels of analysis. Multi-dimensional data obtained in the course of aging-related research are difficult to analyze. However, with the use of artificial intelligence (AI), datasets at the molecular, genetic and biophysical information levels become more insightful and help strengthen skin resilience. AI also plays a major role in the visualization and simulation of skin and its derivatives (hair and nails). AI-driven technologies thus contribute to advances in skin aging research, including method development and data acquisition, evaluation and interpretation. It supports the development of new drugs, optimizes treatment recommendations and aids in substantiating the effectiveness of personalized approaches. This chapter outlines some future prospects of the application of AI in the areas of personalization and inclusiveness for both skin research and clinical practice.

Keywords

  • Artificial intelligence
  • Skin aging
  • Skin resilience
  • Multi-dimensional data
  • Facial imaging
  • Skin research
  • Clinical practice
  • Personalization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adegun AA, Viriri S (2020) Deep Learning-Based System for Automatic Melanoma Detection. IEEE Access 8:7160–7172

    CrossRef  Google Scholar 

  • Alizés ID (2022) Phylogene Cosmetics. https://www.phylogene.com/index.php?pagendx=323&project=phylogene_en. Accessed 3 Nov 2022

  • Alkuhlani A, Gad W, Roushdy M, Salem A-BM (2020) Artificial Intelligence for Glycation Site Prediction. In: IEICE Information and Communication Technology Forum. unknown

    Google Scholar 

  • Alzahrani T, Al-Nuaimy W, Al-Bander B (2021) Integrated multi-model face shape and eye attributes identification for hair style and eyelashes recommendation. Computation (basel) 9:54

    CrossRef  Google Scholar 

  • Alzahrani T, Al-Nuaimy W, Al-Bander B (2019) Hybrid feature learning and engineering based approach for face shape classification. In: 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). IEEE

    Google Scholar 

  • An J, Chua CK, Mironov V (2021) Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin. Int J Bioprint 7:342

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Antikainen H, Driscoll M, Haspel G, Dobrowolski R (2017) TOR-mediated regulation of metabolism in aging. Aging Cell 16:1219–1233

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Antipov G, Baccouche M, Dugelay J-L (2017) Face aging with conditional generative adversarial networks. In: 2017 IEEE International Conference on Image Processing (ICIP). unknown, pp 2089–2093

    Google Scholar 

  • Ashland (2022b) https://www.ashland.com/industries/personal-and-home-care/skin-and-sun-care/santalwood-biofunctional. Accessed 3 Nov 2022

  • BASF (2022a) In: PeptAIdeTM 4.0—A new naturally derived active ingredient from BASF that protects skin and hair against silent inflammation. https://www.basf.com/global/en/media/news-releases/2020/10/p-20-334.html. Accessed 3 Nov 2022a

  • Batool N, Chellappa R (2014) Detection and inpainting of facial wrinkles using texture orientation fields and Markov random field modeling. IEEE Trans Image Process 23:3773–3788

    CrossRef  PubMed  Google Scholar 

  • Batool N, Chellappa R (2015) Fast detection of facial wrinkles based on Gabor features using image morphology and geometric constraints. Pattern Recogn 48:642–658

    CrossRef  Google Scholar 

  • Bazin R, Flament F, Qiu H (2017) Skin Aging Atlas: Volume 5, Photo-aging Face & Body

    Google Scholar 

  • Becker J, Mahlke NS, Reckert A et al (2020) Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med 134:721–733

    CrossRef  PubMed  Google Scholar 

  • Birch HL (2018) Extracellular Matrix and Ageing. Subcell Biochem 90:169–190

    CrossRef  CAS  PubMed  Google Scholar 

  • Bobrov E, Georgievskaya A, Kiselev K et al (2018) PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging 10:3249–3259

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bocklandt S, Lin W, Sehl ME et al (2011) Epigenetic predictor of age. PLoS ONE 6:e14821

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Boroni M, Zonari A, Reis de Oliveira C et al (2020) Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clin Epigenetics 12:105

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Boxberger M, Cenizo V, Cassir N, La Scola B (2021) Challenges in exploring and manipulating the human skin microbiome. Microbiome 9:125

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Carrieri AP, Haiminen N, Maudsley-Barton S et al (2021) Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences. Sci Rep 11:4565

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstensen LL, Isaacowitz DM, Charles ST (1999) Taking time seriously. A theory of socioemotional selectivity. Am Psychol 54:165–181

    CrossRef  CAS  PubMed  Google Scholar 

  • Castilho RM, Squarize CH, Chodosh LA et al (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5:279–289

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W-J, Chen L-B, Chen M-C et al (2020) ScalpEye: A Deep Learning-Based Scalp Hair Inspection and Diagnosis System for Scalp Health. IEEE Access 8:134826–134837

    CrossRef  Google Scholar 

  • Chartier C, Watt A, Lin O, et al (2022) BreastGAN: Artificial Intelligence-Enabled Breast Augmentation Simulation. Aesthet Surg J Open Forum 4:ojab052

    Google Scholar 

  • Chen Y, Geng A, Zhang W et al (2020) Fight to the bitter end: DNA repair and aging. Ageing Res Rev 64:101154

    CrossRef  CAS  PubMed  Google Scholar 

  • Chinski H, Lerch R, Tournour D et al (2022) An Artificial Intelligence Tool for Image Simulation in Rhinoplasty. Facial Plast Surg 38:201–206

    CrossRef  PubMed  Google Scholar 

  • Cho C, Lee E, Park G et al (2022) Evaluation of facial skin age based on biophysical properties in vivo. J Cosmet Dermatol 21:3546–3554

    CrossRef  PubMed  Google Scholar 

  • Chong LH, Ching T, Farm HJ et al (2022) Integration of a microfluidic multicellular coculture array with machine learning analysis to predict adverse cutaneous drug reactions. Lab Chip 22:1890–1904

    CrossRef  CAS  PubMed  Google Scholar 

  • Christensen K, Thinggaard M, McGue M et al (2009) Perceived age as clinically useful biomarker of ageing: cohort study. BMJ 339:b5262

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Codella N, Nguyen Q-B, Pankanti S, et al (2016) Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images. arXiv [cs.CV]

    Google Scholar 

  • Crystal DT, Cuccolo NG, Ibrahim AMS et al (2020) Photographic and Video Deepfakes Have Arrived: How Machine Learning May Influence Plastic Surgery. Plast Reconstr Surg 145:1079–1086

    CrossRef  CAS  PubMed  Google Scholar 

  • Cula GO, Bargo PR, Nkengne A, Kollias N (2013) Assessing facial wrinkles: automatic detection and quantification. Skin Res Technol 19:e243–e251

    CrossRef  CAS  PubMed  Google Scholar 

  • Dehon H, Brédart S (2001) An “Other-Race” Effect in Age Estimation from Faces. Perception 30:1107–1113

    CrossRef  CAS  PubMed  Google Scholar 

  • Deng J, Guo J, Ververas E, et al (2020) RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

    Google Scholar 

  • Dhariwal P, Nichol A (2021) Diffusion models beat GANs on image synthesis. arXiv [cs.LG]

    Google Scholar 

  • Dimitriu PA, Iker B, Malik K, et al (2019) New Insights into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome. MBio 10.: https://doi.org/10.1128/mBio.00839-19

  • Doersch C, Gupta A, Efros AA (2015) Unsupervised Visual Representation Learning by Context Prediction. 2015 IEEE International Conference on Computer Vision (ICCV)

    Google Scholar 

  • Dosovitskiy A, Beyer L, Kolesnikov A, et al (2020) An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv [cs.CV]

    Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalera S, Gonzàlez J, Baró X, Guyon I (2015) ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition. In: 2015 International Joint Conference on Neural Networks (IJCNN). unknown, pp 1–8

    Google Scholar 

  • Fan H, Xie Q, Zhang Z et al (2021) Chronological Age Prediction: Developmental Evaluation of DNA Methylation-Based Machine Learning Models. Front Bioeng Biotechnol 9:819991

    CrossRef  PubMed  Google Scholar 

  • Fedintsev A, Moskalev A (2020) Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 62:101097

    CrossRef  CAS  PubMed  Google Scholar 

  • Fink B, Liebner K, Müller AK et al (2018) Hair color and skin color together influence perceptions of age, health, and attractiveness in lightly-pigmented, young women. Int J Cosmet Sci 40(3):303–312

    Google Scholar 

  • Flament F, Jacquet L, Ye C et al (2022) Artificial Intelligence analysis of over half a million European and Chinese women reveals striking differences in the facial skin ageing process. J Eur Acad Dermatol Venereol 36:1136–1142

    CrossRef  CAS  PubMed  Google Scholar 

  • Flood KS, Houston NA, Savage KT, Kimball AB (2019) Genetic basis for skin youthfulness. Clin Dermatol 37:312–319

    CrossRef  PubMed  Google Scholar 

  • Fogel BS, Greenberg DB (2015) Psychiatric Care of the Medical Patient. Oxford University Press, USA

    CrossRef  Google Scholar 

  • Franco AC, Aveleira C, Cavadas C (2022) Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med 28:97–109

    Google Scholar 

  • Freire-Aradas A, Girón-Santamaría L, Mosquera-Miguel A et al (2022) A common epigenetic clock from childhood to old age. Forensic Sci Int Genet 60:102743

    CrossRef  CAS  PubMed  Google Scholar 

  • Galkin F, Mamoshina P, Kochetov K et al (2021) DeepMAge: A Methylation Aging Clock Developed with Deep Learning. Aging Dis 12:1252–1262

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gallucci A, Znamenskiy D, Pezzotti N, Petkovic M (2020) Hair counting with deep learning. 2020 International Conference on Biomedical Innovations and Applications (BIA)

    Google Scholar 

  • Gao W, Tan J, Hüls A et al (2017) Genetic variants associated with skin aging in the Chinese Han population. J Dermatol Sci 86:21–29

    CrossRef  CAS  PubMed  Google Scholar 

  • Georgievskaya A (2022) Artificial Intelligence Confirming Treatment Success: The Role of Gender- and Age-Specific Scales in Performance Evaluation. Plast Reconstr Surg 150:34S-40S

    CrossRef  CAS  PubMed  Google Scholar 

  • Georgievskaya A, Tlyachev T, Krutmann J, et al (2020) 14086 A new multimodal age prediction image analysis method from hands images of different age groups by neural network model. J Am Acad Dermatol 83:AB18

    Google Scholar 

  • Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5:e9199

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gilaberte Y, Prieto-Torres L, Pastushenko I, Juarranz Á (2016) Anatomy and Function of the Skin. Nanoscience in Dermatology 1–14

    Google Scholar 

  • Gladyshev VN (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15:594–602

    Google Scholar 

  • Gunn DA, de Craen AJM, Dick JL et al (2013) Facial appearance reflects human familial longevity and cardiovascular disease risk in healthy individuals. J Gerontol A Biol Sci Med Sci 68:145–152

    CrossRef  PubMed  Google Scholar 

  • Han SS, Park GH, Lim W et al (2018) Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS ONE 13:e0191493

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    CrossRef  CAS  PubMed  Google Scholar 

  • Ho J, Salimans T (2022) Classifier-Free Diffusion Guidance. arXiv [cs.LG]

    Google Scholar 

  • Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. Adv Neural Inf Process Syst

    Google Scholar 

  • Holzscheck N, Söhle J, Kristof B et al (2020) Multi-omics network analysis reveals distinct stages in the human aging progression in epidermal tissue. Aging 12:12393–12409

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzscheck N, Falckenhayn C, Söhle J et al (2021) Modeling transcriptomic age using knowledge-primed artificial neural networks. NPJ Aging Mech Dis 7:15

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19:371–384

    CrossRef  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Kassani S, Hosseinzadeh Kassani P (2019) A comparative study of deep learning architectures on melanoma detection. Tissue Cell 58:76–83

    CrossRef  PubMed  Google Scholar 

  • Hosseini MS, Razavi Z, Ehsani AH et al (2021) Clinical significance of non-invasive skin autofluorescence measurement in patients with diabetes: a systematic review and meta-analysis. EClinicalMedicine 42:101194

    Google Scholar 

  • Jacobs LC, Hamer MA, Gunn DA et al (2015) A Genome-Wide Association Study Identifies the Skin Color Genes IRF4, MC1R, ASIP, and BNC2 Influencing Facial Pigmented Spots. J Invest Dermatol 135:1735–1742

    CrossRef  CAS  PubMed  Google Scholar 

  • Jones BC, Little AC, Penton-Voak IS, et al (2001) Facial symmetry and judgements of apparent health: Support for a “good genes” explanation of the attractiveness–symmetry relationship, 22(6), pp.417–429. Evolution and human behavior

    Google Scholar 

  • Kärkkäinen K, Joo J (2021) FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp 1547–1557

    Google Scholar 

  • Kartynnik Y, Ablavatski A, Grishchenko I, Grundmann M (2019) Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs. arXiv [cs.CV]

    Google Scholar 

  • Kennedy K, Cal R, Casey R et al (2020) The anti-ageing effects of a natural peptide discovered by artificial intelligence. Int J Cosmet Sci 42:388–398

    CrossRef  CAS  PubMed  Google Scholar 

  • Khan SM, Liu X, Nath S et al (2021) A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digit Health 3:e51–e66

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim ES, Hagan KA, Grodstein F et al (2017) Optimism and Cause-Specific Mortality: A Prospective Cohort Study. Am J Epidemiol 185:21–29

    CrossRef  PubMed  Google Scholar 

  • Kim S, Yoon H, Lee J, Yoo S (2022) Semi-automatic Labeling and Training Strategy for Deep Learning-based Facial Wrinkle Detection. 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)

    Google Scholar 

  • Kinn PM, Holdren GO, Westermeyer BA et al (2015) Age-dependent variation in cytokines, chemokines, and biologic analytes rinsed from the surface of healthy human skin. Sci Rep 5:10472

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagami S, Yamada Y, Nagai M (2010) An own-age bias and an own-gender bias in face recognition. The Proceedings of the Annual Convention of the Japanese Psychological Association 74:3EV051–3EV051

    Google Scholar 

  • Kollias N, Stamatas GN (2002) Optical non-invasive approaches to diagnosis of skin diseases. J Investig Dermatol Symp Proc 7:64–75

    CrossRef  PubMed  Google Scholar 

  • Koníčková D, Menšíková K, Tučková L et al (2022) Biomarkers of neurodegenerative diseases: biology, taxonomy, clinical relevance, and current research status. Biomedicines 10:1760

    Google Scholar 

  • Kordzadeh N, Ghasemaghaei M (2022) Algorithmic bias: review, synthesis, and future research directions. Eur J Inf Syst 31:388–409

    CrossRef  Google Scholar 

  • Kosmadaki MG, Gilchrest BA (2004) The role of telomeres in skin aging/photoaging. Micron 35:155–159

    CrossRef  CAS  PubMed  Google Scholar 

  • Krutmann J, Bouloc A, Sore G et al (2017) The skin aging exposome. J Dermatol Sci 85:152–161

    CrossRef  PubMed  Google Scholar 

  • Krutmann J, Schikowski T, Morita A, Berneburg M (2021) Environmentally-Induced (Extrinsic) Skin Aging: Exposomal Factors and Underlying Mechanisms. J Invest Dermatol 141:1096–1103

    CrossRef  CAS  PubMed  Google Scholar 

  • Lambros V (2020) Facial Aging: A 54-Year, Three-Dimensional Population Study. Plast Reconstr Surg 145:921–928

    CrossRef  CAS  PubMed  Google Scholar 

  • Le Clerc S, Taing L, Ezzedine K et al (2013) A Genome-Wide Association Study in Caucasian Women Points Out a Putative Role of the STXBP5L Gene in Facial Photoaging. J Invest Dermatol 133:929–935

    CrossRef  PubMed  Google Scholar 

  • Lee LO, James P, Zevon ES et al (2019) Optimism is associated with exceptional longevity in 2 epidemiologic cohorts of men and women. Proc Natl Acad Sci U S A 116:18357–18362

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Lee JW, Choe SJ et al (2020) Clinically Applicable Deep Learning Framework for Measurement of the Extent of Hair Loss in Patients With Alopecia Areata. JAMA Dermatol 156:1018–1020

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lee SG, Shin JG, Kim Y et al (2022) Identification of Genetic Loci Associated with Facial Wrinkles in a Large Korean Population. J Invest Dermatol 142:2824–2827

    CrossRef  CAS  PubMed  Google Scholar 

  • Lee J-E, Oh J, Song D, et al (2021) Acetylated Resveratrol and Oxyresveratrol Suppress UVB-Induced MMP-1 Expression in Human Dermal Fibroblasts. Antioxidants (Basel) 10.: https://doi.org/10.3390/antiox10081252

  • Lee A-Y (2021) Skin Pigmentation Abnormalities and Their Possible Relationship with Skin Aging. Int J Mol Sci 22.: https://doi.org/10.3390/ijms22073727

  • Levy JJ, Titus AJ, Petersen CL et al (2020) MethylNet: an automated and modular deep learning approach for DNA methylation analysis. BMC Bioinformatics 21:108

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19:373–379

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Bai X, Peng T et al (2020) New Insights Into the Skin Microbial Communities and Skin Aging. Front Microbiol 11:565549

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Li Y, Shen L (2018) Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors 18.: https://doi.org/10.3390/s18020556

  • Li X, Li W, Xu Y (2018) Human Age Prediction Based on DNA Methylation Using a Gradient Boosting Regressor. Genes 9.: https://doi.org/10.3390/genes9090424

  • Little AC, Jones BC, DeBruine LM (2011) Facial attractiveness: evolutionary based research. Philosophical Transactions of the Royal Society b: Biological Sciences 366:1638–1659

    CrossRef  Google Scholar 

  • Liu Y, Jain A, Eng C et al (2020) A deep learning system for differential diagnosis of skin diseases. Nat Med 26:900–908

    CrossRef  CAS  PubMed  Google Scholar 

  • Löckenhoff CE, Carstensen LL (2004) Socioemotional selectivity theory, aging, and health: the increasingly delicate balance between regulating emotions and making tough choices. J Pers 72:1395–1424

    CrossRef  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L et al (2013) The Hallmarks of Aging. Cell 153:1194–1217

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Yang J, Xiao K et al (2021) Skin coloration is a culturally-specific cue for attractiveness, healthiness, and youthfulness in observers of Chinese and western European descent. PLoS ONE 16:e0259276

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Liu M, Wang Y et al (2020) Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging 12:13529–13554

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol 8.: https://doi.org/10.1101/cshperspect.a021873

  • Nagasawa K, Yamamoto S, Arai W, et al (2022) Fabrication of a Human Skin Mockup with a Multilayered Concentration Map of Pigment Components Using a UV Printer. J Imaging Sci Technol 8.: https://doi.org/10.3390/jimaging8030073

  • Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49:978–986

    CrossRef  PubMed  Google Scholar 

  • Ng C-C, Yap MH, Costen N, Li B (2015b) Wrinkle Detection Using Hessian Line Tracking. IEEE Access 3:1079–1088

    CrossRef  Google Scholar 

  • Ng C-C, Yap MH, Costen N, Li B (2015a) Automatic Wrinkle Detection Using Hybrid Hessian Filter. Computer Vision -- ACCV 2014 609–622

    Google Scholar 

  • Ng C-C, Yap MH, Costen N, Li B (2015c) Will Wrinkle Estimate the Face Age? 2015c IEEE International Conference on Systems, Man, and Cybernetics

    Google Scholar 

  • Ni J, Hong H, Zhang Y et al (2021) Development of a non-invasive method for skin cholesterol detection: preclinical assessment in atherosclerosis screening. Biomed Eng Online 20:52

    Google Scholar 

  • Nichol A, Dhariwal P, Ramesh A, et al (2021) GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. arXiv [cs.CV]

    Google Scholar 

  • Nie C, Li Y, Li R et al (2022) Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep 38:110459

    CrossRef  CAS  PubMed  Google Scholar 

  • Nijhawan R, Verma R, Ayushi, Mittal A (2017) An Integrated Deep Learning Framework Approach for Nail Disease Identification. In: 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). unknown, pp 197–202

    Google Scholar 

  • Niu G, Sun L, Liu Q et al (2020) Selfie-Posting and Young Adult Women’s Restrained Eating: The Role of Commentary on Appearance and Self-Objectification. Sex Roles 82:232–240

    CrossRef  Google Scholar 

  • O’Neill CA, Monteleone G, McLaughlin JT, Paus R (2016) The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays 38:1167–1176

    CrossRef  PubMed  Google Scholar 

  • Oh Kim J, Park B, Yoon Choi J et al (2021) Identification of the Underlying Genetic Factors of Skin Aging in a Korean Population Study. J Cosmet Sci 72:63–80

    PubMed  Google Scholar 

  • Olejnik A, Semba JA, Kulpa A et al (2022) 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 11:26–38

    CrossRef  CAS  PubMed  Google Scholar 

  • Pathak D, Krahenbuhl P, Donahue J, et al (2016) Context Encoders: Feature Learning by Inpainting. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  • Pei W, Dibeklioglu H, Baltrusaitis T, Tax DMJ (2019) Attended End-to-end Architecture for Age Estimation from Facial Expression Videos. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2019.2948288

    CrossRef  PubMed  Google Scholar 

  • Petitjean A, Sainthillier J-M, Mac-Mary S et al (2007) Skin radiance: how to quantify? Validation of an optical method. Skin Res Technol 13:2–8

    CrossRef  PubMed  Google Scholar 

  • Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1104

    CrossRef  Google Scholar 

  • Pilkington SM, Bulfone-Paus S, Griffiths CEM, Watson REB (2021) Inflammaging and the Skin. J Invest Dermatol 141:1087–1095

    CrossRef  CAS  PubMed  Google Scholar 

  • Pun FW, Leung GHD, Leung HW et al (2022) Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging 14:2475–2506

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan T, Shao Y, He T et al (2010) Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol 130:415–424

    CrossRef  CAS  PubMed  Google Scholar 

  • Que-Salinas U, Martinez-Peon D, Reyes-Figueroa AD, et al (2022) On the Prediction of In Vitro Arginine Glycation of Short Peptides Using Artificial Neural Networks. Sensors 22.: https://doi.org/10.3390/s22145237

  • Rahrovan S, Fanian F, Mehryan P et al (2018) Male versus female skin: what dermatologists and cosmeticians should know. Int J Women’s Dermatol 4:122–130

    Google Scholar 

  • Rawlings AV (2006) Ethnic skin types: are there differences in skin structure and function? Int J Cosmet Sci 28:79–93

    CrossRef  CAS  PubMed  Google Scholar 

  • Rinnerthaler M, Bischof J, Streubel MK et al (2015) Oxidative stress in aging human skin. Biomolecules 5:545–589

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothe R, Timofte R, Van Gool L (2015) DEX: Deep EXpectation of Apparent Age from a Single Image. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW). pp 252–257

    Google Scholar 

  • Rutledge J, Oh H, Wyss-Coray T (2022) Measuring biological age using omics data. Nat Rev Genet. https://doi.org/10.1038/s41576-022-00511-7

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sacha JP, Caterino TL, Fisher BK et al (2021) Development and qualification of a machine learning algorithm for automated hair counting. Int J Cosmet Sci 43(Suppl 1):S34–S41

    PubMed  Google Scholar 

  • Salem I, Ramser A, Isham N, Ghannoum MA (2018) The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol 9:1459

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sarcu D, Adamson P (2017) Psychology of the Facelift Patient. Facial Plast Surg 33:252–259

    CrossRef  CAS  PubMed  Google Scholar 

  • Shen Y, Stanislauskas M, Li G et al (2017) Epigenetic and genetic dissections of UV-induced global gene dysregulation in skin cells through multi-omics analyses. Sci Rep 7:42646

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherlock M, Wagstaff DL (2019) Exploring the relationship between frequency of Instagram use, exposure to idealized images, and psychological well-being in women. Psychol Pop Media Cult 8:482–490

    CrossRef  Google Scholar 

  • Shim J, Lim JM, Park SG (2019) Machine learning for the prediction of sunscreen sun protection factor and protection grade of UVA. Exp Dermatol 28:872–874

    CrossRef  CAS  PubMed  Google Scholar 

  • Shin J, Lee Y, Li Z, et al (2022) Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. Micromachines (Basel) 13.: https://doi.org/10.3390/mi13030363

  • Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140:2535–2547

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Haneef N, Uday A (2005) Nail changes and disorders among the elderly. Indian J Dermatol Venereol Leprol 71:386

    CrossRef  PubMed  Google Scholar 

  • Tang X, Wang Z, Luo W, Gao S (2018) Face Aging with Identity-Preserved Conditional Generative Adversarial Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  • Tanikawa C, Yamashiro T (2021) Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients. Sci Rep 11:15853

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Trüeb RM, Tobin D (2010) Aging Hair. Springer Science & Business Media

    Google Scholar 

  • Turner AE, Abu-Ghname A, Davis MJ et al (2020) Role of Simulation and Artificial Intelligence in Plastic Surgery Training. Plast Reconstr Surg 146:390e–391e

    CrossRef  CAS  PubMed  Google Scholar 

  • Uotinen V, Rantanen T, Suutama T (2005) Perceived age as a predictor of old age mortality: a 13-year prospective study. Age Ageing 34:368–372

    CrossRef  PubMed  Google Scholar 

  • Vaiserman A, Krasnienkov D (2020) Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front Genet 11:630186

    CrossRef  CAS  PubMed  Google Scholar 

  • Van Neste D, Tobin DJ (2004) Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron 35:193–200

    CrossRef  PubMed  Google Scholar 

  • Vashi NA, de Castro Maymone MB, Kundu RV (2016) Aging differences in ethnic skin. J Clin Aesthet Dermatol 9:31–38

    Google Scholar 

  • Vijayakumar KA, Cho G-W (2022) Pan-tissue methylation aging clock: Recalibrated and a method to analyze and interpret the selected features. Mech Ageing Dev 204:111676

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang H, Sanchez V, Li C-T (2022) Improving Face-Based Age Estimation With Attention-Based Dynamic Patch Fusion. IEEE Trans Image Process 31:1084–1096

    CrossRef  PubMed  Google Scholar 

  • Westendorp RGJ, van Heemst D, Rozing MP et al (2009) Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study. J Am Geriatr Soc 57:1634–1637

    CrossRef  PubMed  Google Scholar 

  • Windhager S, Mitteroecker P, Rupić I et al (2019) Facial aging trajectories: A common shape pattern in male and female faces is disrupted after menopause. Am J Phys Anthropol 169:678–688

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wood E, Baltrusaitis T, Hewitt C, et al (2022) 3D face reconstruction with dense landmarks

    Google Scholar 

  • Xiao P, Chen D (2022) The Effect of Sun Tan Lotion on Skin by Using Skin TEWL and Skin Water Content Measurements. Sensors 22.: https://doi.org/10.3390/s22093595

  • Xu Y, Li X, Yang Y et al (2019) Human age prediction based on DNA methylation of non-blood tissues. Comput Methods Programs Biomed 171:11–18

    CrossRef  PubMed  Google Scholar 

  • Yeh S-J, Lin J-F, Chen B-S (2021) Multiple-Molecule Drug Design Based on Systems Biology Approaches and Deep Neural Network to Mitigate Human Skin Aging. Molecules 26.: https://doi.org/10.3390/molecules26113178

  • Zaguia A, Pandey D, Painuly S et al (2022) DNA Methylation Biomarkers-Based Human Age Prediction Using Machine Learning. Comput Intell Neurosci 2022:8393498

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Ma X, Zhou K (2018) CAAE : Improved CAAE for Age Progression/Regression. IEEE Access 6:66715–66722

    CrossRef  Google Scholar 

  • Zhai X, Oliver A, Kolesnikov A, Beyer L (2019) S4L: Self-Supervised Semi-Supervised Learning. 2019 IEEE/CVF International Conference on Computer Vision (ICCV)

    Google Scholar 

  • Zhang Z, Song Y, Qi H (2017) Age Progression/Regression by Conditional Adversarial Autoencoder. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  • Zhavoronkov A, Bischof E, Lee K-F (2021) Artificial intelligence in longevity medicine. Nature Aging 1:5–7

    CrossRef  PubMed  Google Scholar 

  • Zhu H, Huang Z, Shan H, Zhang J (2020) Look Globally, Age Locally: Face Aging With an Attention Mechanism. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

    Google Scholar 

  • Zortea M, Schopf TR, Thon K et al (2014) Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists. Artif Intell Med 60:13–26

    CrossRef  PubMed  Google Scholar 

  • Zouboulis CC, Bechara FG, Dickinson-Blok JL et al (2019) Hidradenitis suppurativa/acne inversa: a practical framework for treatment optimization—systematic review and recommendations from the HS ALLIANCE working group. J Eur Acad Dermatol Venereol 33:19–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Georgievskaya .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

Anastasia Georgievskaya, Daniil Danko, and Timur Tlyachev are employed at HautAI OU. Hugo Corstjens acts as the HautAI OU scientific advisor. Richard A. Baxter is employed at Phase Plastic Surgery.

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Georgievskaya, A., Danko, D., Baxter, R.A., Corstjens, H., Tlyachev, T. (2023). Artificial Intelligence Approaches for Skin Anti-aging and Skin Resilience Research. In: Moskalev, A., Stambler, I., Zhavoronkov, A. (eds) Artificial Intelligence for Healthy Longevity. Healthy Ageing and Longevity, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-35176-1_10

Download citation