Abstract
While humans are usually considered as overly visual, human vision is poor at the beginning of life. In contrast, olfaction is an early-developing sense that promotes adaptive responses and may support visual development. Accordingly, this chapter reviews recent studies that we conducted showing that the mother’s body odor selectively facilitates face categorization in the 4-month-old human brain. We also reveal that as infants grow up, their ability to categorize faces improves until 12 months of age and becomes progressively independent of the influence of maternal odor. We open with findings in adults, demonstrating that odor-driven visual categorization is still observed for ambiguous stimuli, aligning with the inverse effectiveness principle of multisensory integration. Overall, this body of research exposes the powerful impact of odors on visual categorization, especially how social chemical cues emanating from the mother can drive the categorization of conspecifics from visual inputs in the developing human brain. These findings suggest that odors act as disambiguating cues fostering visual categorization as an inverse function of its effectiveness and point toward a critical role of multisensory inputs for the acquisition of categories in humans, relying on the ordered development across the senses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
ERPs suffer from a low signal-to-noise ratio and are constrained by their sensitivity to (e.g., muscular) artifacts in awake infant studies. ERPs also use post-hoc subtraction between absolute brain responses to transient stimuli, such that face-selective neural activity is indirectly obtained and can be masked by large noise in the subtracted responses, or driven by a subset of stimuli. In addition, the time-windows of ERP components are often difficult to define objectively from brain responses that are heterogenous in terms of shape, latency and polarity across individuals and age groups. Finally, ERP studies generally use a limited set of homogenous and edited stimuli (i.e., segmented from their natural background with identical exposure conditions across category exemplars; see footnote 2), and compare faces to only a few nonface categories.
- 2.
Naturalistic stimuli depict the main item of each stimulus embedded in the original background the photography was taken in, without controlling for viewpoints, luminance, contrast, colors, etc. This is opposed to edited (sometimes referred to as standardized) stimuli which are commonly used in visual experiments, where the item is isolated from its background and generally homogenized across the different exemplars to control for inter-stimulus variability.
- 3.
It should be also noted that with frequency-tagging EEG, infants are tested under the same conditions and using the same stimuli as for adults, making infants’ data comparable to that of adults but increasing categorization difficulty at such an early stage of development. The maternal odor effect could thus have been also favored by this demanding paradigm for their immature visual system. More generally, one may question the ecological validity of our paradigm since infants rarely see faces so rapidly in their everyday experience. However, while slower modes of visual display better match the natural timing of exposure to a conspecifics’ face, they are rather limited in terms of measurement validity, especially for visual categorization, as they often rely on a limited set of edited visual stimuli depicting only a few visual categories (see Sect. 2.1 for a discussion of this issue; see also Kominsky et al., 2022, for a recent discussion about the difficult balance between ecological and measurement validity in infant research). Moreover, as mentioned above, we aimed to investigate the development of face categorization using adult performance as reference. Neurotypical adults reach a plateau for categorizing natural views of faces after only a short exposure of about 80 ms (≈ 12 Hz of fast periodic visual stimulation; see e.g., Retter et al., 2020). Hence, despite its limitations in ecological terms, our paradigm is well designed to measure the development of adult-like rapid face categorization in the infant brain. Admittedly, future studies should investigate odor-driven visual categorization in other experimental and/or natural designs to further improve the generalizability of our findings.
References
Adrian, E. D., & Matthews, B. H. C. (1934). The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57(4), 355–385. https://doi.org/10.1093/brain/57.4.355
Akcan, E., & Polat, S. (2016). Comparative effect of the smells of amniotic fluid, breast milk, and lavender on newborns’ pain during heel lance. Breastfeeding Medicine, 11(6), 309–314. https://doi.org/10.1089/bfm.2015.0174
Amso, D., Haas, S., & Markant, J. (2014). An eye tracking investigation of developmental change in bottom-up attention orienting to faces in cluttered natural scenes. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085701
Aoyama, S., Toshima, T., Saito, Y., Konishi, N., Motoshige, Ishikawa, N., Nakamura, K., & Kobayashi, M. (2010). Maternal breast milk odour induces frontal lobe activation in neonates: A NIRS study. Early Human Development, 86(9), 541–545. https://doi.org/10.1016/j.earlhumdev.2010.07.003
Bahrick, L. E., & Lickliter, R. (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development. In A. Bremner, D. J. Lewkowicz, & C. Spence (Eds.), Multisensory development (pp. 183–205). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199586059.003.0008
Bartocci, M., Winberg, J., Ruggiero, C., Bergqvist, L. L., Serra, G., & Lagercrantz, H. (2000). Activation of olfactory cortex in newborn infants after odor stimulation: A functional near-infrared spectroscopy study. Pediatric Research, 48(1), 1. https://doi.org/10.1203/00006450-200007000-00006
Behrmann, M., & Plaut, D. C. (2020). Hemispheric organization for visual object recognition: A theoretical account and empirical evidence. Perception, 030100661989904. https://doi.org/10.1177/0301006619899049
Benetti, S., Zonca, J., Ferrari, A., Rezk, M., Rabini, G., & Collignon, O. (2021). Visual motion processing recruits regions selective for auditory motion in early deaf individuals. NeuroImage, 230, 117816. https://doi.org/10.1016/j.neuroimage.2021.117816
Birch, H. G., & Lefford, A. (1963). Intersensory development in children. Monographs of the Society for Research in Child Development, 28(5), 1–48. https://doi.org/10.2307/1165681
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision Research, 51(13), 1588–1609. https://doi.org/10.1016/j.visres.2011.02.018
Brand, G., Millot, J.-L., & Henquell, D. (2001). Complexity of olfactory lateralization processes revealed by functional imaging: A review. Neuroscience and Biobehavioral Reviews, 25(2), 159–166. https://doi.org/10.1016/S0149-7634(01)00005-7
Broca, M. P. (1879). Recherches sur les centres olfactifs. Revue d’Anthropologie, 2(385).
Browne, J. V. (2008). Chemosensory development in the fetus and newborn. Newborn and Infant Nursing Reviews, 8(4), 180–186. https://doi.org/10.1053/j.nainr.2008.10.009
Buiatti, M., Di Giorgio, E., Piazza, M., Polloni, C., Menna, G., Taddei, F., Baldo, E., & Vallortigara, G. (2019). Cortical route for facelike pattern processing in human newborns. Proceedings of the National Academy of Sciences, 116(10), 4625–4630. https://doi.org/10.1073/pnas.1812419116
Caharel, S., Leleu, A., Bernard, C., Viggiano, M.-P., Lalonde, R., & Rebaï, M. (2013). Early holistic face-like processing of Arcimboldo paintings in the right occipito-temporal cortex: Evidence from the N170 ERP component. International Journal of Psychophysiology, 90(2), 157–164. https://doi.org/10.1016/j.ijpsycho.2013.06.024
Cecchetto, C., Fischmeister, F. P. S., Gorkiewicz, S., Schuehly, W., Bagga, D., Parma, V., & Schöpf, V. (2020). Human body odor increases familiarity for faces during encoding-retrieval task. Human Brain Mapping. https://doi.org/10.1002/hbm.24920
Cernoch, J. M., & Porter, R. H. (1985). Recognition of maternal axillary odors by infants. Child Development, 56(6), 1593–1598. JSTOR. https://doi.org/10.2307/1130478
Conte, S., Richards, J. E., Guy, M. W., Xie, W., & Roberts, J. E. (2020). Face-sensitive brain responses in the first year of life. NeuroImage, 116602. https://doi.org/10.1016/j.neuroimage.2020.116602
Damon, F., Mezrai, N., Magnier, L., Leleu, A., Durand, K., & Schaal, B. (2021). Olfaction in the multisensory processing of faces: A narrative review of the influence of human body odors. Frontiers in Psychology, 12, 750944. https://doi.org/10.3389/fpsyg.2021.750944
Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray.
de Groot, J. H. B., Semin, G. R., & Smeets, M. A. M. (2017). On the communicative function of body odors: A theoretical integration and review. Perspectives on Psychological Science, 12(2), 306–324. https://doi.org/10.1177/1745691616676599
de Haan, M., Johnson, M. H., & Halit, H. (2003). Development of face-sensitive event-related potentials during infancy: A review. International Journal of Psychophysiology, 51(1), 45–58. https://doi.org/10.1016/S0167-8760(03)00152-1
de Haan, M., & Nelson, C. A. (1999). Brain activity differentiates face and object processing in 6-month-old infants. Developmental Psychology, 35(4), 1113–1121. https://doi.org/10.1037/0012-1649.35.4.1113
de Heering, A., Goffaux, V., Dollion, N., Godard, O., Durand, K., & Baudouin, J.-Y. (2016). Three-month-old infants’ sensitivity to horizontal information within faces: Infant preference for face horizontal information. Developmental Psychobiology, 58(4), 536–542. https://doi.org/10.1002/dev.21396
de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. eLife, 4, 14. https://doi.org/10.7554/eLife.06564
Demattè, M. L., Sanabria, D., & Spence, C. (2006). Cross-modal associations between odors and colors. Chemical Senses, 31(6), 531–538. https://doi.org/10.1093/chemse/bjj057
Di Giorgio, E., Leo, I., Pascalis, O., & Simion, F. (2012). Is the face-perception system human-specific at birth? Developmental Psychology, 48(4), 1083–1090. https://doi.org/10.1037/a0026521
Djordjevic, J., Zatorre, R. J., Petrides, M., Boyle, J. A., & Jones-Gotman, M. (2005). Functional neuroimaging of odor imagery. NeuroImage, 24(3), 791–801. https://doi.org/10.1016/j.neuroimage.2004.09.035
Doucet, S., Soussignan, R., Sagot, P., & Schaal, B. (2007). The ‘“smellscape”’ of mother’s breast: Effects of odor masking and selective unmasking on neonatal arousal, oral, and visual responses. Developmental Psychobiology. Wiley, 49, 129–138. https://doi.org/10.1002/dev
Doucet, S., Soussignan, R., Sagot, P., & Schaal, B. (2009). The secretion of areolar (Montgomery’s) glands from lactating women elicits selective, unconditional responses in neonates. PLoS ONE, 4(10), e7579. https://doi.org/10.1371/journal.pone.0007579
Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron, 57(1), 11–23. https://doi.org/10.1016/j.neuron.2007.12.013
Durand, K., Baudouin, J.-Y., Lewkowicz, D. J., Goubet, N., & Schaal, B. (2013). Eye-catching odors: Olfaction elicits sustained gazing to faces and eyes in 4-month-old infants. PLoS ONE, 8(8), 1–8. https://doi.org/10.1371/journal.pone.0070677
Durand, K., Schaal, B., Goubet, N., Lewkowicz, D. J., & Baudouin, J.-Y. (2020). Does any mother’s body odor stimulate interest in mother’s face in 4-month-old infants? Infancy, 25(1). https://doi.org/10.1111/infa.12322
Edelman, G. M. (1993). Neural darwinism: Selection and reentrant signaling in higher brain function. Neuron, 10(2), 115–125. https://doi.org/10.1016/0896-6273(93)90304-A
Eimas, P. D., & Quinn, P. C. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 65(3), 903–917. https://doi.org/10.1111/j.1467-8624.1994.tb00792.x
Elsner, B., Jeschonek, S., & Pauen, S. (2013). Event-related potentials for 7-month-olds’ processing of animals and furniture items. Developmental Cognitive Neuroscience, 3, 53–60. https://doi.org/10.1016/j.dcn.2012.09.002
Endevelt-Shapira, Y., Djalovski, A., Dumas, G., & Feldman, R. (2021). Maternal chemosignals enhance infant-adult brain-to-brain synchrony. Science Advances, 7(50), eabg6867. https://doi.org/10.1126/sciadv.abg6867
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162–169. https://doi.org/10.1016/j.tics.2004.02.002
Faas, A. E., Spontón, E. D., Moya, P. R., & Molina, J. C. (2000). Differential responsiveness to alcohol odor in human neonates: Effects of maternal consumption during gestation. Alcohol, 22(1), 7–17. https://doi.org/10.1016/S0741-8329(00)00103-8
Frank, M. C., Amso, D., & Johnson, S. P. (2014). Visual search and attention to faces during early infancy. Journal of Experimental Child Psychology, 118, 13–26. https://doi.org/10.1016/j.jecp.2013.08.012
Frie, J., Bartocci, M., & Kuhn, P. (2019). Neonatal cortical perceptions of maternal breast odours: A fNIRS study. Acta Paediatrica, 1–8. https://doi.org/10.1111/apa.15114
Gellrich, J., Breuer, A. S., Han, P., Güdücü, C., Hummel, T., & Schriever, V. A. (2021). Central nervous system processing of floral odor and mother’s milk odor in infants. Chemical Senses, 46, bjab024. https://doi.org/10.1093/chemse/bjab024
Ghazanfar, A., & Schroeder, C. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), 278–285. https://doi.org/10.1016/j.tics.2006.04.008
Gibson, E. J. (1969). Principles of perceptual learning and development. Appleton-Century-Crofts.
Gliga, T., & Dehaene-Lambertz, G. (2007). Development of a view-invariant representation of the human head. Cognition, 102(2), 261–288. https://doi.org/10.1016/j.cognition.2006.01.004
Gliga, T., Elsabbagh, M., Andravizou, A., & Johnson, M. H. (2009). Faces attract infants’ attention in complex displays. Infancy, 14(5), 550–562. https://doi.org/10.1080/15250000903144199
Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65(2), 231–262.
Graven, S. N., & Browne, J. V. (2008). Visual development in the human fetus, infant, and young child. Newborn and Infant Nursing Reviews, 8(4), 194–201. https://doi.org/10.1053/j.nainr.2008.10.011
Grill-Spector, K., Weiner, K. S., Kay, K., & Gomez, J. (2017). The functional neuroanatomy of human face perception. Annual Review of Vision Science, 3(1), 167–196. https://doi.org/10.1146/annurev-vision-102016-061214
Grossmann, T., Gliga, T., Johnson, M. H., & Mareschal, D. (2009). The neural basis of perceptual category learning in human infants. Journal of Cognitive Neuroscience, 21(12), 2276–2286. https://doi.org/10.1162/jocn.2009.21188
Hagen, S., Jacques, C., Maillard, L., Colnat-Coulbois, S., Rossion, B., & Jonas, J. (2020). Spatially dissociated intracerebral maps for face- and house-selective activity in the human ventral occipito-temporal cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhaa022
Halit, H., Csibra, G., Volein, Á., & Johnson, M. H. (2004). Face-sensitive cortical processing in early infancy. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(7), 1228–1234. https://doi.org/10.1111/j.1469-7610.2004.00321.x
Harris, L., Atkinson, J., & Braddick, O. (1976). Visual contrast sensitivity of a 6-month-old infant measured by the evoked potential. Nature, 264(5586), 570–571. https://doi.org/10.1038/264570a0
Hartmann, C., Doucet, S., Niclass, Y., Dittrich, R., Cupisti, S., Schaal, B., Buettner, A., & Starkenmann, C. (2012). Human sweat odour conjugates in human milk, colostrum and amniotic fluid. Food Chemistry, 135(1), 228–233. https://doi.org/10.1016/j.foodchem.2012.04.077
Hepper, P. G., Wells, D. L., Dornan, J. C., & Lynch, C. (2013). Long-term flavor recognition in humans with prenatal garlic experience. Developmental Psychobiology, 55(5), 568–574. https://doi.org/10.1002/dev.21059
Herrick, C. J. (1933). Morphogenesis of the brain. Journal of Morphology, 54(2), 233–258. https://doi.org/10.1002/jmor.1050540202
Hoehl, S. (2016). The development of category specificity in infancy—what can we learn from electrophysiology? Neuropsychologia, 83. https://doi.org/10.1016/j.neuropsychologia.2015.08.021
Hörberg, T., Larsson, M., Ekström, I., Sandöy, C., Lundén, P., & Olofsson, J. K. (2020). Olfactory influences on visual categorization: Behavioral and ERP evidence. Cerebral Cortex. https://doi.org/10.1093/cercor/bhaa050
Hutmacher, F. (2019). Why is there so much more research on vision than on any other sensory modality? Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02246
Jacques, C., Retter, T. L., & Rossion, B. (2016). A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain. NeuroImage, 137, 21–33. https://doi.org/10.1016/j.neuroimage.2016.04.045
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2015). The faces in infant-perspective scenes change over the first year of life. PLoS ONE, 10(5), e0123780. https://doi.org/10.1371/journal.pone.0123780
Jebreili, M., Neshat, H., Seyyedrasouli, A., Ghojazade, M., Hosseini, M. B., & Hamishehkar, H. (2015). Comparison of breastmilk odor and vanilla odor on mitigating premature infants’ response to pain during and after venipuncture. Breastfeeding Medicine, 10(7), 362–365. https://doi.org/10.1089/bfm.2015.0060
Jessen, S. (2020). Maternal odor reduces the neural response to fearful faces in human infants. Developmental Cognitive Neuroscience, 45, 100858. https://doi.org/10.1016/j.dcn.2020.100858
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40, 1–19. https://doi.org/10.1016/0010-0277(91)90045-6
Jonas, J., Jacques, C., Liu-Shuang, J., Brissart, H., Colnat-Coulbois, S., Maillard, L., & Rossion, B. (2016). A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proceedings of the National Academy of Sciences, 113(28), E4088–E4097. https://doi.org/10.1073/pnas.1522033113
Kelly, D. J., Duarte, S., Meary, D., Bindemann, M., & Pascalis, O. (2019). Infants rapidly detect human faces in complex naturalistic visual scenes. Developmental Science, e12829. https://doi.org/10.1111/desc.12829
Klaey-Tassone, M., Durand, K., Damon, F., Heyers, K., Mezrai, N., Patris, B., Sagot, P., Soussignan, R., Schaal, B., & the MILKODOR Consortium. (2020). Human neonates prefer colostrum to mature milk: Evidence for an olfactory bias toward the “initial milk”? American Journal of Human Biology. https://doi.org/10.1002/ajhb.23521
Kobayashi, M., Otsuka, Y., Nakato, E., Kanazawa, S., Yamaguchi, M. K., & Kakigi, R. (2012). Do infants recognize the Arcimboldo images as faces? Behavioral and near-infrared spectroscopic study. Journal of Experimental Child Psychology, 111(1), 22–36. https://doi.org/10.1016/j.jecp.2011.07.008
Kominsky, J. F., Lucca, K., Thomas, A. J., Frank, M. C., & Hamlin, J. K. (2022). Simplicity and validity in infant research. Cognitive Development, 63, 101213. https://doi.org/10.1016/j.cogdev.2022.101213
Kouider, S., Stahlhut, C., Gelskov, S. V., Barbosa, L. S., Dutat, M., de Gardelle, V., Christophe, A., Dehaene, S., & Dehaene-Lambertz, G. (2013). A neural marker of perceptual consciousness in infants. Science, 340(April), 376–380. https://doi.org/10.1126/science.1232509
Kwon, M.-K., Setoodehnia, M., Baek, J., Luck, S. J., & Oakes, L. M. (2016). The development of visual search in infancy: Attention to faces versus salience. Developmental Psychology, 52(4), 537–555. https://doi.org/10.1037/dev0000080
Lecanuet, J.-P., & Schaal, B. (1996). Fetal sensory competencies. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 68, 1–23.
Leleu, A., Demily, C., Franck, N., Durand, K., Schaal, B., & Baudouin, J.-Y. (2015). The odor context facilitates the perception of low-intensity facial expressions of emotion. PLoS ONE, 10(9), e0138656. https://doi.org/10.1371/journal.pone.0138656
Leleu, A., Rekow, D., Poncet, F., Schaal, B., Durand, K., Rossion, B., & Baudouin, J.-Y. (2020). Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 23(2), e12877. https://doi.org/10.1111/desc.12877
Leppänen, J. M. (2016). Using eye tracking to understand infants’ attentional bias for faces. Child Development Perspectives, 10(3), 161–165. https://doi.org/10.1111/cdep.12180
Lewkowicz, D. J. (1996). Perception of auditory–visual temporal synchrony in human infants. Journal of Experimental Psychology. Human Perception and Performance, 22, 1094–1106. https://doi.org/10.1037/0096-1523.22.5.1094
Lewkowicz, D. J. (2010). The ontogeny of human multisensory object perception: A constructivist account. In J. Kaiser & M. J. Naumer (Eds.), Multisensory object perception in the primate brain (pp. 303–327). Springer.
Liu-Shuang, J., Yang, Y.-F., Rossion, B., & Goffaux, V. (2022). Natural contrast statistics facilitate human face categorization. ENeuro, 9(5). https://doi.org/10.1523/ENEURO.0420-21.2022
Lochy, A., Schiltz, C., & Rossion, B. (2019). The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Developmental Science. https://doi.org/10.1111/desc.12914
Loos, H. M., Doucet, S., Soussignan, R., Hartmann, C., Durand, K., Dittrich, R., Sagot, P., Buettner, A., & Schaal, B. (2014). Responsiveness of human neonates to the odor of 5α-androst-16-en-3-one: A behavioral paradox? Chemical Senses, 39(8), 693–703. https://doi.org/10.1093/chemse/bju041
Loos, H. M., Reger, D., & Schaal, B. (2019). The odour of human milk: Its chemical variability and detection by newborns. Physiology & Behavior, 199, 88–99. https://doi.org/10.1016/j.physbeh.2018.11.008
Lübke, K. T., & Pause, B. M. (2015). Always follow your nose: The functional significance of social chemosignals in human reproduction and survival. Hormones and Behavior, 68, 134–144. https://doi.org/10.1016/j.yhbeh.2014.10.001
Macchi Cassia, V., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15(6), 379–383. https://doi.org/10.1111/j.0956-7976.2004.00688.x
Macfarlane, A. (1975). Olfaction in the development of social preferences in the human neonate. CIBA Foundation Symposium, 33, 103–117. https://doi.org/10.1002/9780470720158.ch7
Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the brain? Trends in Cognitive Sciences, 15(3), 97–103. https://doi.org/10.1016/j.tics.2011.01.004
Makin, J. W., & Porter, R. H. (1989). Attractiveness of lactating females’ breast odors to neonates. Child Development, 60(4), 803–810. JSTOR. https://doi.org/10.2307/1131020
Marin, M. M., Rapisardi, G., & Tani, F. (2015). Two-day-old newborn infants recognise their mother by her axillary odour. Acta Paediatrica, 104(3), 237–240. https://doi.org/10.1111/apa.12905
Marinović, V., Hoehl, S., & Pauen, S. (2014). Neural correlates of human–animal distinction: An ERP-study on early categorical differentiation with 4- and 7-month-old infants and adults. Neuropsychologia, 60, 60–76. https://doi.org/10.1016/j.neuropsychologia.2014.05.013
Marlier, L., & Schaal, B. (2005). Human newborns prefer human milk: Conspecific milk odor is attractive without postnatal exposure. Child Development, 76(1), 155–168. https://doi.org/10.1111/j.1467-8624.2005.00836.x
Marlier, L., Schaal, B., & Soussignan, R. (1998). Neonatal responsiveness to the odor of amniotic and lacteal fluids: A test of perinatal chemosensory continuity. Child Development, 69(3), 611–623. https://doi.org/10.1111/j.1467-8624.1998.00611.x
Mattioni, S., Rezk, M., Battal, C., Bottini, R., Cuculiza Mendoza, K. E., Oosterhof, N. N., & Collignon, O. (2020). Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind. eLife, 9, e50732. https://doi.org/10.7554/eLife.50732
McGann, J. P. (2017). Poor human olfaction is a 19th-century myth. Science, 356(597). https://doi.org/10.1126/science.aam7263
Mujica-Parodi, L. R., Strey, H. H., Frederick, B., Savoy, R., Cox, D., Botanov, Y., Tolkunov, D., Rubin, D., & Weber, J. (2009). Chemosensory cues to conspecific emotional stress activate amygdala in humans. PLoS ONE, 4(7), e6415. https://doi.org/10.1371/journal.pone.0006415
Murphy, G. L. (2002). Conceptual combination. In The big book of concepts. MIT Press.
Nelson, C. A. (2001). The development and neural bases of face recognition. Infant and Child Development, 10(1–2), 3–18. https://doi.org/10.1002/icd.239
Nishitani, S., Miyamura, T., Tagawa, M., Sumi, M., Takase, R., Doi, H., Moriuchi, H., & Shinohara, K. (2009). The calming effect of a maternal breast milk odor on the human newborn infant. Neuroscience Research, 63(1), 66–71. https://doi.org/10.1016/j.neures.2008.10.007
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15(6), 1–16. https://doi.org/10.1167/15.6.4
Or, C. C.-F., Retter, T. L., & Rossion, B. (2019). The contribution of color information to rapid face categorization in natural scenes. Journal of Vision, 19(5), 20–20. https://doi.org/10.1167/19.5.20
Parma, V., Gordon, A. R., Cecchetto, C., Cavazzana, A., Lundström, J. N., & Olsson, M. J. (2017). Processing of human body odors. In A. Buettner (Ed.), Springer handbook of odor (pp. 127–128). Springer. https://doi.org/10.1007/978-3-319-26932-0_51
Parma, V., Ohla, K., Veldhuizen, M. G., Niv, M. Y., Kelly, C. E., Bakke, A. J., Cooper, K. W., Bouysset, C., Pirastu, N., Dibattista, M., Kaur, R., Liuzza, M. T., Pepino, M. Y., Schöpf, V., Pereda-Loth, V., Olsson, S. B., Gerkin, R. C., Rohlfs Domínguez, P., Albayay, J., et al. (2020). More than smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chemical Senses, 45(7), 609–622. https://doi.org/10.1093/chemse/bjaa041
Pascalis, O., Fort, M., & Quinn, P. C. (2020). Development of face processing: Are there critical or sensitive periods? Current Opinion in Behavioral Sciences, 36, 7–12. https://doi.org/10.1016/j.cobeha.2020.05.005
Peykarjou, S., & Hoehl, S. (2013). Three-month-olds’ brain responses to upright and inverted faces and cars. Developmental Neuropsychology, 38(4), 272–280. https://doi.org/10.1080/87565641.2013.786719
Peykarjou, S., Hoehl, S., Pauen, S., & Rossion, B. (2017). Rapid categorization of human and ape faces in 9-month-old infants revealed by fast periodic visual stimulation. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-12760-2
Peykarjou, S., Langeloh, M., Baccolo, E., Rossion, B., & Pauen, S. (2022). Superior neural individuation of mother’s than stranger’s faces by five months of age. Cortex, 155, 264–276. https://doi.org/10.1016/j.cortex.2022.07.011
Piaget, J. (1952). The origins of intelligence in children. International University Press.
Poncet, F., Leleu, A., Rekow, D., Damon, F., Durand, K., Schaal, B., & Baudouin, J.-Y. (2021). Odor-evoked hedonic contexts influence the categorization of facial expressions in the human brain. Biological Psychology, 158, 108005. https://doi.org/10.1016/j.biopsycho.2020.108005
Poncet, F., Leleu, A., Rekow, D., Damon, F., Dzhelyova, M. P., Schaal, B., Durand, K., Faivre, L., Rossion, B., & Baudouin, J.-Y. (2022). A neural marker of rapid discrimination of facial expression in 3.5- and 7-month-old infants. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.901013
Porter, R. H., & Winberg, J. (1999). Unique salience of maternal breast odors for newborn infants. Neuroscience and Biobehavioral Reviews, 23(3), 439–449. https://doi.org/10.1016/S0149-7634(98)00044-X
Prehn-Kristensen, A., Wiesner, C., Bergmann, T. O., Wolff, S., Jansen, O., Mehdorn, H. M., Ferstl, R., & Pause, B. M. (2009). Induction of empathy by the smell of anxiety. PLoS ONE, 4(6), e5987. https://doi.org/10.1371/journal.pone.0005987
Quek, G. L., Liu-Shuang, J., Goffaux, V., & Rossion, B. (2018). Ultra-coarse, single-glance human face detection in a dynamic visual stream. NeuroImage, 176, 465–476. https://doi.org/10.1016/j.neuroimage.2018.04.034
Quinn, P. C. (2011). Born to categorize. In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development (Vol. 2, 2nd ed., pp. 129–152). Wiley-Blackwell.
Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22(4), 463–475. https://doi.org/10.1068/p220463
Quinn, P. C., Westerlund, A., & Nelson, C. A. (2006). Neural markers of categorization in 6-month-old infants. Psychological Science, 17(1), 59–66. https://doi.org/10.1111/j.1467-9280.2005.01665.x
Rattaz, C., Goubet, N., & Bullinger, A. (2005). The calming effect of a familiar odor on full-term newborns. Journal of Developmental and Behavioral Pediatrics, 26(2), 86–92. https://doi.org/10.1097/00004703-200504000-00003
Regenbogen, C., Johansson, E., Andersson, P., Olsson, M. J., & Lundström, J. N. (2016). Bayesian-based integration of multisensory naturalistic perithreshold stimuli. Neuropsychologia, 88, 123–130. https://doi.org/10.1016/j.neuropsychologia.2015.12.017
Rekow, D., Baudouin, J.-Y., Brochard, R., Rossion, B., & Leleu, A. (2022a). Rapid neural categorization of facelike objects predicts the perceptual awareness of a face (face pareidolia). Cognition, 222, 105016. https://doi.org/10.1016/j.cognition.2022.105016
Rekow, D., Baudouin, J.-Y., Durand, K., & Leleu, A. (2022b). Smell what you hardly see: Odors assist visual categorization in the human brain. NeuroImage, 255, 119181. https://doi.org/10.1016/j.neuroimage.2022.119181
Rekow, D., Baudouin, J.-Y., Poncet, F., Damon, F., Durand, K., Schaal, B., Rossion, B., & Leleu, A. (2021). Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences, 118(21). https://doi.org/10.1073/pnas.2014979118
Rekow, D., Baudouin, J.-Y., Rossion, B., & Leleu, A. (2020a). An ecological measure of rapid and automatic face-sex categorization. Cortex, 127, 150–161. https://doi.org/10.1016/j.cortex.2020.02.007
Rekow, D., Leleu, A., Poncet, F., Damon, F., Rossion, B., Durand, K., Schaal, B., & Baudouin, J.-Y. (2020b). Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: Further evidence for the role of intersensory congruency in perceptual development. Cognitive Development, 55, 100930. https://doi.org/10.1016/j.cogdev.2020.100930
Rennels, J. L., & Davis, R. E. (2008). Facial experience during the first year. Infant Behavior & Development, 31(4), 665–678. https://doi.org/10.1016/j.infbeh.2008.04.009
Retter, T. L., Jiang, F., Webster, M. A., & Rossion, B. (2020). All-or-none face categorization in the human brain. NeuroImage, 213, 116685. https://doi.org/10.1016/j.neuroimage.2020.116685
Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9–28. https://doi.org/10.1016/j.neuropsychologia.2016.07.028
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An event-related potential and cortical source localization study. Developmental Psychology, 41(4), 598–615. https://doi.org/10.1037/0012-1649.41.4.598
Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 128(2), 274–289. https://doi.org/10.1016/j.actpsy.2008.02.003
Rossion, B., Dricot, L., Goebel, R., & Busigny, T. (2011). Holistic face categorization in higher order visual areas of the normal and prosopagnosic brain: Toward a non-hierarchical view of face perception. Frontiers in Human Neuroscience, 4, 1–30. https://doi.org/10.3389/fnhum.2010.00225
Rossion, B., & Lochy, A. (2021). Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Structure & Function. https://doi.org/10.1007/s00429-021-02370-0
Rossion, B., Torfs, K., Jacques, C., & Liu-Shuang, J. (2015). Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. Journal of Vision, 15(1), 1–18. https://doi.org/10.1167/15.1.18
Royet, J.-P. (2004). Lateralization of olfactory processes. Chemical Senses, 29(8), 731–745. https://doi.org/10.1093/chemse/bjh067
Royet, J.-P., Hudry, J., Zald, D. H., Godinot, D., Grégoire, M. C., Lavenne, F., Costes, N., & Holley, A. (2001). Functional neuroanatomy of different olfactory judgments. NeuroImage, 13(3), 506–519. https://doi.org/10.1006/nimg.2000.0704
Rubin, D., Botanov, Y., Hajcak, G., & Mujica-Parodi, L. R. (2012). Second-hand stress: Inhalation of stress sweat enhances neural response to neutral faces. Social Cognitive and Affective Neuroscience, 7(2), 208–212. https://doi.org/10.1093/scan/nsq097
Russell, M. J. (1976). Human olfactory communication. Nature, 260(5551), 5551. https://doi.org/10.1038/260520a0
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69(1), 181–203. https://doi.org/10.1146/annurev-psych-122216-011805
Schaal, B. (1988). Olfaction in infants and children: Developmental and functional perspectives. Chemical Senses, 13(2), 145–190.
Schaal, B., & Al Aïn, S. (2014). Chemical signals ‘selected for’ newborns in mammals. Animal Behaviour, 97, 289–299. https://doi.org/10.1016/j.anbehav.2014.08.022
Schaal, B., Coureaud, G., Langlois, D., Giniès, C., Sémon, E., & Perrier, G. (2003). Chemical and behavioural characterization of the rabbit mammary pheromone. Nature, 424(6944), 68–72. https://doi.org/10.1038/nature01739
Schaal, B., Hummel, T., & Soussignan, R. (2004). Olfaction in the fetal and premature infant: Functional status and clinical implications. Clinics in Perinatology, 31(2), 261–285. https://doi.org/10.1016/j.clp.2004.04.003
Schaal, B., Marlier, L., & Soussignan, R. (1998). Olfaction function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behavioral Neuroscience, 112(6), 1438–1449. https://doi.org/10.1037/0735-7044.112.6.1438
Schaal, B., Marlier, L., & Soussignan, R. (2000). Human foetuses learn odours from their pregnant mother’s diet. Chemical Senses, 25(6), 729–737. https://doi.org/10.1093/chemse/25.6.729
Schaal, B., Saxton, T. K., Loos, H., Soussignan, R., & Durand, K. (2020). Olfaction scaffolds the developing human from neonate to adolescent and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1800), 20190261. https://doi.org/10.1098/rstb.2019.0261
Schaal, B., Soussignan, R., & Marlier, L. (2002). Olfactory cognition at the start of life: The perinatal shaping of selective odor responsiveness. In C. Rouby, B. Schaal, D. Dubois, R. Gervais, & A. Holley (Eds.), Olfaction, taste, and cognition (pp. 421–440). Cambridge University Press.
Seigneuric, A., Durand, K., Jiang, T., Baudouin, J.-Y., & Schaal, B. (2010). The nose tells it to the eyes: Crossmodal associations between olfaction and vision. Perception, 39(11), 1541–1554. https://doi.org/10.1068/p6740
Sela, L., & Sobel, N. (2010). Human olfaction: A constant state of change-blindness. Experimental Brain Research, 205(1), 13–29. https://doi.org/10.1007/s00221-010-2348-6
Simion, F., & Di Giorgio, E. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes. Frontiers in Psychology, 6(July), 1–11. https://doi.org/10.3389/fpsyg.2015.00969
Simion, F., Leo, I., Turati, C., Valenza, E., & Dalla Barba, B. (2007). How face specialization emerges in the first months of life. In Progress in brain research (Vol. 164, pp. 169–185). Elsevier. https://doi.org/10.1016/S0079-6123(07)64009-6
Soussignan, R., Schaal, B., Marlier, L., & Jiang, T. (1997). Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: Re-examining early hedonic discrimination of odors. Physiology & Behavior, 62(4), 745–758. https://doi.org/10.1016/S0031-9384(97)00187-X
Spahn, J. M., Callahan, E. H., Spill, M. K., Wong, Y. P., Benjamin-Neelon, S. E., Birch, L., Black, M. M., Cook, J. T., Faith, M. S., Mennella, J. A., & Casavale, K. O. (2019). Influence of maternal diet on flavor transfer to amniotic fluid and breast milk and children’s responses: A systematic review. The American Journal of Clinical Nutrition, 109(Supplement_1), 1003S–1026S. https://doi.org/10.1093/ajcn/nqy240
Spence, C. (2021). The scent of attraction and the smell of success: Crossmodal influences on person perception. Cognitive Research: Principles and Implications, 6(1), 46. https://doi.org/10.1186/s41235-021-00311-3
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. The MIT Press.
Sugden, N. A., Mohamed-Ali, M. I., & Moulson, M. C. (2014). I spy with my little eye: Typical, daily exposure to faces documented from a first-person infant perspective. Developmental Psychobiology, 56(2), 249–261. https://doi.org/10.1002/dev.21183
Sullivan, R. M., & Toubas, P. (1998). Clinical usefulness of maternal odor in newborns: Soothing and feeding preparatory responses. Neonatology, 74(6), 402–408. https://doi.org/10.1159/000014061
Turati, C., Simion, F., Milani, I., & Umiltà, C. (2002). Newborns’ preference for faces: What is crucial? Developmental Psychology, 38(6), 875–882. https://doi.org/10.1037/0012-1649.38.6.875
Turati, C., Valenza, E., Leo, I., & Simion, F. (2005). Three-month-olds’ visual preference for faces and its underlying visual processing mechanisms. Journal of Experimental Child Psychology, 90(3), 255–273. https://doi.org/10.1016/j.jecp.2004.11.001
Turkewitz, G., & Devenny, D. A. (1993). Developmental time and timing. Lawrence Erlbaum Associates.
Valenza, E., Simion, F., Cassia, V. M., & Umiltà, C. (1996). Face preference at birth. Journal of Experimental Psychology. Human Perception and Performance, 22(4), 892–903. https://doi.org/10.1037/0096-1523.22.4.892
Varendi, H., Porter, R. H., & Winberg, J. (1994). Does the newborn baby find the nipple by smell? Lancet, 344(8928), 989–990. https://doi.org/10.1016/S0140-6736(94)91645-4
Vettori, S., Dzhelyova, M., Van der Donck, S., Jacques, C., Steyaert, J., Rossion, B., & Boets, B. (2019). Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder. NeuroImage, 21, 101613. https://doi.org/10.1016/j.nicl.2018.101613
Wagner, S., Issanchou, S., Chabanet, C., Lange, C., Schaal, B., & Monnery-Patris, S. (2019). Weanling infants prefer the odors of green vegetables, cheese, and fish when their mothers consumed these foods during pregnancy and/or lactation. Chemical Senses, 44(4), 257–265. https://doi.org/10.1093/chemse/bjz011
Weisfeld, G. E., Czilli, T., Phillips, K. A., Gall, J. A., & Lichtman, C. M. (2003). Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance. Journal of Experimental Child Psychology, 85(3), 279–295. https://doi.org/10.1016/S0022-0965(03)00061-4
Werchan, D. M., Baumgartner, H. A., Lewkowicz, D. J., & Amso, D. (2018). The origins of cortical multisensory dynamics: Evidence from human infants. Developmental Cognitive Neuroscience, 34, 75–81. https://doi.org/10.1016/j.dcn.2018.07.002
Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141. https://doi.org/10.1037/h0027474
Zatorre, R. J., Jones-Gotman, M., & Rouby, C. (2000). Neural mechanisms involved in odor pleasantness and intensity judgments. NeuroReport, 11(12), 2711–2716. https://doi.org/10.1097/00001756-200008210-00021
Zernecke, R., Haegler, K., Kleemann, A. M., Albrecht, J., Frank, T., Linn, J., Brückmann, H., & Wiesmann, M. (2011). Effects of male anxiety chemosignals on the evaluation of happy facial expressions. Journal of Psychophysiology, 25(3), 116–123. https://doi.org/10.1027/0269-8803/a000047
Zhang, S., Su, F., Li, J., & Chen, W. (2018). The analgesic effects of maternal milk odor on newborns: A meta-analysis. Breastfeeding Medicine, 13(5), 327–334. https://doi.org/10.1089/bfm.2017.0226
Zheng, Y., You, Y., Farias, A. R., Simon, J., Semin, G. R., Smeets, M. A. M., & Li, W. (2018). Human chemosignals of disgust facilitate food judgment. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-35132-w
Zhou, G., Lane, G., Cooper, S. L., Kahnt, T., & Zelano, C. (2019). Characterizing functional pathways of the human olfactory system. eLife, 8, e47177. https://doi.org/10.7554/eLife.47177
Zhou, W., & Chen, D. (2008). Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices. The Journal of Neuroscience, 28(53), 14416–14421. https://doi.org/10.1523/JNEUROSCI.3148-08.2008
Zhou, W., & Chen, D. (2009). Fear-related chemosignals modulate recognition of fear in ambiguous facial expressions. Psychological Science, 20(2), 177–183. https://doi.org/10.1111/j.1467-9280.2009.02263.x
Zhou, W., Jiang, Y., He, S., & Chen, D. (2010). Olfaction modulates visual perception in binocular rivalry. Current Biology, 20(15), 1356–1358. https://doi.org/10.1016/j.cub.2010.05.059
Acknowledgments
The studies presented in this chapter have received financial support from the Centre National de la Recherche Scientifique (CNRS), the “Conseil Régional Bourgogne Franche-Comté” (PARI grant), the FEDER (European Funding for Regional Economic Development), the French ‘Investissements d’Avenir’ program, project ISITE-BFC (contract ANR-15-IDEX-03) and the French National Research Agency (contract ANR-19-CE28-0009). The authors wish to thank the co-authors of the original papers of the studies described here (in alphabetical order: J.-Y. Baudouin, F. Damon, K. Durand, F. Poncet, B. Rossion & B. Schaal), along with Sylviane Martin for her help in recruiting participants and Vincent Gigot for his assistance in preprocessing the EEG signals.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rekow, D., Leleu, A. (2023). Tips from the Nose: Odor-Driven Visual Categorization in the Developing Human Brain. In: Schaal, B., Rekow, D., Keller, M., Damon, F. (eds) Chemical Signals in Vertebrates 15. CSiV 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-35159-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-35159-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35158-7
Online ISBN: 978-3-031-35159-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)