Skip to main content

Antiviral Activities of Cannabis

  • Chapter
  • First Online:
Plant-Based Therapeutics, Volume 1

Abstract

Despite the history of scientific evidence regarding plants and their products in prophylactics and therapeutics, their applications in healthcare systems are only now gaining momentum. Plants contain bioactive compounds that target certain viruses to cure or prevent viral diseases and infections. They provide a rich resource of antiviral drugs. Identifying the antiviral mechanisms in plants has shed light on where they interact with the life cycle of viruses, such as viral entry, replication, assembly, and release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiller JT, Lowy DR (2021) An Introduction to Virus Infections and Human Cancer. Recent Results Cancer Res 217:1–11

    Google Scholar 

  2. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582

    Article  CAS  PubMed  Google Scholar 

  3. Nomiyama H, Osada H, Yoshie O (2013) Systematic classification of vertebrate chemokines based on conserved Synteny and evolutionary history. Genes Cells 18:1–16

    Article  CAS  PubMed  Google Scholar 

  4. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84

    Article  CAS  PubMed  Google Scholar 

  5. Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, Copeland N, Bazan JF, Moore KW, Schall TJ (1994) Lymphotactin: a cytokine that represents a new class of chemokine. Science 266:1395–1399

    Article  CAS  PubMed  Google Scholar 

  6. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, Laudanna C (2000) Chemokines trigger immediate Beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13:759–769

    Article  CAS  PubMed  Google Scholar 

  7. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  8. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2:129–134

    Article  CAS  PubMed  Google Scholar 

  9. Smith KA, Maizels RM (2014) IL-6 controls susceptibility to helminth infection by impeding Th2 responsiveness and altering the Treg phenotype in vivo. Eur J Immunol 44:150–161

    Article  CAS  PubMed  Google Scholar 

  10. Nordmann S, Vilotitch S, Roux P, Esterle L, Spire B, Marcellin F, Salmon-Ceron D, Dabis F, Chas J, Rey D, Wittkop L, Sogni P, Carrieri P (2018) Daily Cannabis and reduced risk of steatosis in human immunodeficiency virus and Hepatitis C virus-co-infected patients (ANRS CO13-HEPAVIH). J Viral Hepat 25(2):171–179

    Article  CAS  PubMed  Google Scholar 

  11. Hézode C, Roudot-Thoraval F, Nguyen S, Grenard P, Julien B, Zafrani ES, Pawlotsky JM, Dhumeaux D, Lotersztajn S, Mallat A (2005) Daily Cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology 42(1):63–71

    Article  PubMed  Google Scholar 

  12. Lowe HI, Toyang NJ, McLaughlin W (2017) Potential of cannabidiol for the treatment of viral hepatitis. Pharm Res 9(1):116–118

    CAS  Google Scholar 

  13. Patsenker E, Sachse P, Chicca A, Gachet MS, Schneider V, Mattsson J, Lanz C, Worni M, de Gottardi A, Semmo M, Hampe J, Schafmayer C, Brenneisen R, Gertsch J, Stickel F, Semmo N (2015) Elevated levels of endocannabinoids in chronic hepatitis C may modulate cellular immune response and hepatic stellate cell activation. Int J Mol Sci 16(4):7057–7076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borroni EM, Bonecchi R (2009) Shaping the gradient by nonchemotactic chemokine receptors. Cell Adhes Migr 3:146–147

    Article  Google Scholar 

  15. Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M, Middleton J, Richmond A, Graham GJ, Segerer S, Nibbs RJ, Rot A (2009) The duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 10:101–108

    Article  CAS  PubMed  Google Scholar 

  16. Groom JR, Richmond J, Murooka TT, Sorensen EW, Sung JH, Bankert K, von Andrian UH, Moon JJ, Mempel TR, Luster AD (2012) CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37:1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    Article  CAS  PubMed  Google Scholar 

  18. Le Vander S, Binder M, Agurell S, Bader-Bartfai A, Gustafsson B, Leander K, Lindgren JE, Olsson A, Tobisson B (1974) Pharmacokinetics in relation to physiological effects of delta-8-Thc (delta-8-thiocarbanidin). Acta Pharm Suecica 11:662

    Google Scholar 

  19. Paris M, Boucher F, Cosson L (1975) The constituents of Cannabis sativa pollen. Econ Bot 29:245–253

    Article  CAS  Google Scholar 

  20. Sarmiento J, Shumate C, Suetomi K, Ravindran A, Villegas L, Rajarathnam K, Navarro J (2011) Diverging mechanisms of activation of chemokine receptors revealed by novel chemokine agonists. PLoS One 6(12):e27967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kryczek I, Wei S, Keller E, Liu R, Zou W (2007) Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 292(3):C987–C995

    Article  CAS  PubMed  Google Scholar 

  22. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300

    Article  CAS  PubMed  Google Scholar 

  23. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced beta cell production of IL-1beta contributes to Glucotoxicity in human pancreatic islets. J Clin Invest 110(6):851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21(5):261–267.24

    Article  Google Scholar 

  25. Eguchi K, Manabe I (2013) Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15(Suppl 3):152–158

    Article  CAS  PubMed  Google Scholar 

  26. Suk K, Kim S, Kim YH, Kim KA, Chang I, Yagita H, Shong M, Lee MS (2001) IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory Factor-1 pathway in pancreatic Beta cell death. J Immunol 166(7):4481–4489

    Article  CAS  PubMed  Google Scholar 

  27. Lee MS (2002) Cytokine synergism in apoptosis: It’s role in diabetes and cancer. J Biochem Mol Biol 35(1):54–60

    CAS  PubMed  Google Scholar 

  28. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, Otterson MF, Ota DM, Lugering N, Domschke W, Binion DG (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278(10):8508–8515

    Article  CAS  PubMed  Google Scholar 

  29. Hammond ME, Lapointe GR, Feucht PH, Hilt S, Gallegos CA, Gordon CA, Giedlin MA, Mullenbach G, Tekamp-Olson P (1995) IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J Immunol 155(3):1428–1433

    Article  CAS  PubMed  Google Scholar 

  30. Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A, Garofalo RP, Rajarathnam K (2010) Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. PLoS One 5(7):e11754

    Article  PubMed  PubMed Central  Google Scholar 

  31. Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Corpetti C, Sarnelli G (2020) The potential of Cannabidiol in the COVID-19 pandemic. Br J Pharmacol 177(21):4967–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang S, Zhu B, Cheon IS, Goplen NP, Jiang L, Zhang R, Peebles RS, Mack M, Kaplan MH, Limper AH, Sun J (2019) PPAR-γ in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J Virol 93(9):e00030–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R (2010) PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol 23(4):343–352

    Article  CAS  PubMed  Google Scholar 

  34. Carboni E, Carta AR, Carboni E (2020) Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med Hypotheses 140:109776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D'Aniello E, Fellous T, Iannotti FA, Gentile A, Allarà M, Balestrieri F, Gray R, Amodeo P, Vitale RM, Di Marzo V (2019) Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochimica et Biophysica Acta General Subjects 1863(3):586–597

    Article  CAS  PubMed  Google Scholar 

  36. Sebastiao AM, Ribeiro FF, Ribeiro JA (2012) From A1 to A3 en passant through a(2A) receptors in the hippocampus: pharmacological implications. CNS Neurol Disord Drug Targets 11(6):652–663

    Article  CAS  PubMed  Google Scholar 

  37. Nascimento F, Sebastião AM, Ribeiro JA (2015) Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A Rreceptor-mediated tonic modulation of neuromuscular transmission. Purinergic Signal 11(4):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Milam JE, Keshamouni VG, Phan SH, Hu B, Gangireddy SR, Hogaboam CM, Standiford TJ, Thannickal VJ, Reddy RC (2008) PPAR-gamma agonists inhibit Profibrotic phenotypes in human lung fibroblasts and Bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(5):L891–L901

    Article  CAS  PubMed  Google Scholar 

  39. Vuolo F, Abreu SC, Michels M, Xisto DG, Blanco NG, Hallak JE, Zuardi AW, Crippa JA, Reis C, Bahl M, Pizzichinni E, Maurici R, Pizzichinni M, Rocco P, Dal-Pizzol F (2019) Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur J Pharmacol 843:251–259

    Article  CAS  PubMed  Google Scholar 

  40. Anil SM, Shalev N, Vinayaka AC, Nadarajan S, Namdar D, Belausov E, Shoval I, Mani KA, Mechrez G, Koltai H (2021) Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci Rep 11(1):1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oláh A, Szekanecz Z, Bíró T (2017) Targeting cannabinoid Signaling in the immune system: "high"-ly exciting questions, possibilities, and challenges. Front Immunol 8:1487

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G (2020) Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 11(8):714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Byrareddy SN, Mohan M (2020) SARS-CoV2 induced respiratory distress: can cannabinoids be added to anti-viral therapies to reduce lung inflammation? Brain Behav Immun 87:120–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Romano B, Pagano E, Orlando P, Capasso R, Cascio MG, Pertwee R, Marzo VD, Izzo AA, Borrelli F (2016) Pure Δ-9-Tetrahydrocannabivarin and a Cannabis sativa extract with high content in Delta-9-Tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacol Res 113(Pt A):199–208

    Article  CAS  PubMed  Google Scholar 

  45. Friedman M, Cepero ML, Klein T, Friedman H (1986) Suppressive effect of delta-9-tetrahydrocannabinol in vitro on phagocytosis by murine macrophages. Proc Soc Experim Biol Med Soc Experim Biol Med 182(2):225–228

    Article  CAS  Google Scholar 

  46. Ribeiro A, Almeida VI, Costola-de-Souza C, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Gimenes-Junior JA, Akamine AT, Crippa JA, Tavares-de-Lima W, Palermo-Neto J (2015) Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacol Immunotoxicol 37(1):35–41

    Article  CAS  PubMed  Google Scholar 

  47. Nichols JM, Kaplan B (2020) Immune responses regulated by Cannabidiol. Cannabis and Cannabinoid Research 5(1):12–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar V, Torben W, Mansfield J, Alvarez X, Vande Stouwe C, Li J, Byrareddy SN, Didier PJ, Pahar B, Molina PE, Mohan M (2019) Cannabinoid attenuation of intestinal inflammation in chronic SIV-infected rhesus macaques involves T cell modulation and differential expression of micro-RNAs and pro-inflammatory genes. Front Immunol 10:914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ross, I.A. (2023). Antiviral Activities of Cannabis. In: Plant-Based Therapeutics, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-031-35155-6_13

Download citation

Publish with us

Policies and ethics