Skip to main content

Ten Years of Intense Physical–Chemical, Geological and Biological Monitoring Over the Tagoro Submarine Volcano Marine Ecosystem (Eruptive and Degassing Stages)

  • Chapter
  • First Online:
El Hierro Island

Abstract

The shallow Tagoro submarine volcano monitoring represents a unique opportunity not only for improving our sparse understanding of submarine volcanic processes in specific scientific fields as physical and chemical oceanography or marine geology but also its interactions over the marine biology in one of the richest marine ecosystems in Europe. This chapter aims to summarize the most relevant physical–chemical, geological and biological changes that occurred in the marine ecosystem of El Hierro island, at the Marine Reserve Punta de La Restinga—El Mar de Las Calmas, due to the genesis of the new underwater volcano Tagoro (27º37′07″N–017º59′28″W) in October 2011. During the first six months of the eruption, extreme physical–chemical perturbations caused by this event, comprising thermal increase from up to + 18.8 °C, water acidification with a pH decrease of 2.9 units, deoxygenation to anoxic levels and extremely high metal enrichment among others, resulted in significant and dramatic alterations of the marine ecosystem. After March 2012, once the eruptive phase was finished, the new submarine volcano entered an active hydrothermal phase involving the release of heat with smaller but still significant and important thermal anomalies of up to + 2.55 °C around the craters, density decrease of − 1.43 kg m−3, pH decrease of − 1.25 units, and high concentrations of metals and inorganic nutrients similar to upwelling zones. These enrichments are still active up to date, producing clear signs of marine recovery not only in the benthonic strata but also in the whole water column compared with pre-eruptive data. Since its eruption ten years ago, an unprecedented monitoring effort has turned into the longest and most complete multidisciplinary time-series for the study of a shallow submarine volcano, with the realization of 31 oceanographic multidisciplinary expeditions that systematically measure more than 40 different physical–chemical and biological variables. All this information and the results obtained during the evolution of the process could serve as a baseline for better understanding future or similar submarine eruptions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Valero AM, Burgess R, Recio C, de Matos V, Sánchez-Guillamón O, Gómez-Ballesteros M, Recio G, Fraile-Nuez E, Sumino H, Flores JA, Ban M, Geyer A, Bárcena MA, Borrajo J, Compaña JM (2018) Noble gas signals in corals predict submarine volcanic eruptions. Chem Geol 480:28–34. https://doi.org/10.1016/j.chemgeo.2017.05.013

    Article  Google Scholar 

  • Ariza A, Kaartvedt S, Røstad A, Garijo JC, Arístegui J, Fraile-Nuez E, Hernández-León S (2014) The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities. PLoS ONE 9:e102354–e102411. https://doi.org/10.1371/journal.pone.0102354

    Article  Google Scholar 

  • Ariza A, Landeira JM, Escánez A, Wienerroither R, Aguilar de Soto N, Røstad A, Kaartvedt S, Hernández-León S (2016) Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J Mar Syst 157:82–91. https://doi.org/10.1016/j.jmarsys.2016.01.004

    Article  Google Scholar 

  • Bakalis E, Mertzimekis TJ, Nomikou P, Zerbetto F (2017) Breathing modes of Kolumbo submarine volcano (Santorini, Greece). Sci Rep 7:46515. https://doi.org/10.1038/srep46515

    Article  Google Scholar 

  • Bakalis E, Mertzimekis TJ, Nomikou P, Zerbetto F (2018) Temperature and conductivity as indicators of the morphology and activity of a submarine volcano: Avyssos (nisyros) in the south aegean sea, Greece. Geosciences (Switzerland) 8. https://doi.org/10.3390/geosciences8060193

  • Baker ET, Massoth GJ (1987) Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet Sci Lett 85:59–73

    Article  Google Scholar 

  • Blanco MJ, Fraile-Nuez E, Felpeto A, Santana-Casiano JM, Abella R, Fernández-Salas LM, Almendros J, Díaz-del-Río V, Domínguez Cerdeña I, García-Cañada L, González-Dávila M, López C, López-González N, Meletlidis S, Vázquez JT (2015) Comment on “Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)” by Pérez NM, Somoza L, Hernández PA, González de Vallejo L, León R, Sagiya T, Biain A, González FJ, Medialdea T, Barrancos J, Ibáñez J, Sumino H, Nogami K and Romero C [Bull Volcanol (2014) 76:882–896]. Bull Volcanol 77:335. https://doi.org/10.1007/s00445-015-0947-6

    Article  Google Scholar 

  • Botz R, Winckler G, Bayer R, Schmitt M, Schmidt M, Garbe-Schönberg D, Stoffers P, Kristjansson JK (1999) Origin of trace gases in submarine hydrothermal vents of the Kolbeinsey Ridge, north Iceland. Earth Planet Sci Lett 171:83–93. https://doi.org/10.1016/S0012-821X(99)00128-4

    Article  Google Scholar 

  • Buck NJ, Resing JA, Baker ET, Lupton JE (2018) Chemical fluxes from a recently erupted shallow submarine volcano on the Mariana Arc. Geochem Geophys Geosyst 19:1660–1673. https://doi.org/10.1029/2018GC007470

    Article  Google Scholar 

  • Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD (1990) Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res 95:12895–12921. https://doi.org/10.1029/JB095iB08p12895

    Article  Google Scholar 

  • Cardigos F, Colaço A, Dando PR, Ávila SP, Sarradin PM, Tempera F, Conceição P, Pascoal A, Serrão Santos R (2005) Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores). Chem Geol 224:153–168. https://doi.org/10.1016/j.chemgeo.2005.07.019

    Article  Google Scholar 

  • Coca J, Ohde T, Redondo A, García-Weil L, Santana-Casiano M, González-Dávila M, Arístegui J, Nuez EF, Ramos AG (2014) Remote sensing of the El Hierro submarine volcanic eruption plume. Int J Remote Sens 35:6573–6598. https://doi.org/10.1080/01431161.2014.960613

    Article  Google Scholar 

  • Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geoth Res 20:177–211. https://doi.org/10.1016/0377-0273(84)90039-8

    Article  Google Scholar 

  • Von Damm K (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Ann Rev Earth Planet Sci 18:173–204. https://doi.org/10.1146/annurev.earth.18.1.173

  • Dando PR, Stüben D, Varnavas SP (1999) Hydrothermalism in the Mediterranean Sea. Prog Oceanogr 44:333–367

    Article  Google Scholar 

  • Danovaro R, Canals M, Tangherlini M, Dell’Anno A, Gambi C, Lastras G, Amblas D, Sanchez-Vidal A, Frigola J, Calafat AM, Pedrosa R, Rivera J, Rayo X, Corinaldesi C (2017) A submarine volcanic eruption leads to a novel microbial habitat. Nat Ecol Evol 1:0144–0148. https://doi.org/10.1038/s41559-017-0144

    Article  Google Scholar 

  • Domínguez-Cerdeña ID, del Fresno C, Moreno AG (2014) Seismicity patterns prior to the 2011 El Hierro Eruption. Bull Seismol Soc Am 104(1):567–575. https://doi.org/10.1785/0120130200

    Article  Google Scholar 

  • Eugenio F, Martin J, Marcello J, Fraile-Nuez E (2014) Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery. Int J Appl Earth Observations Geoinf 29:53–66. https://doi.org/10.1016/j.jag.2013.12.009

    Article  Google Scholar 

  • Fernández de Puelles ML, Gazá M, Cabanellas M, Herrera I, González-Vega A, Presas-Navarro C, Arrieta JM, Fraile-Nuez E (2021) Abundance and structure of the zooplankton community during a post-eruptive process: the case of the submarine volcano Tagoro (El Hierro; Canary islands) 2013–2018. Front Mar Sci 8:692885. https://doi.org/10.3389/fmars.2021.692885

    Article  Google Scholar 

  • Ferrera I, Arístegui J, González JM, Montero MF, Fraile-Nuez E, Gasol JM (2015) Transient changes in bacterioplankton communities induced by the submarine volcanic Eruption of El Hierro (Canary Islands). PLoS ONE 10:1–24. https://doi.org/10.1371/journal.pone.0118136

    Article  Google Scholar 

  • Fraile-Nuez E, González-Dávila M, Santana-Casiano JM, Arístegui J, Alonso-González IJ, Hernández-León S, Blanco MJ, Rodríguez-Santana A, Hernández-Guerra A, Gelado-Caballero MD, Eugenio F, Marcello J, De Armas D, Domínguez-Yanes JF, Montero MF, Laetsch DR, Vélez-Belchí P, Ramos A, Ariza AV, Comas-Rodríguez I, Benítez-Barrios VM (2012) The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response. Sci Rep 2:486. https://doi.org/10.1038/srep00486

    Article  Google Scholar 

  • Fraile-Nuez E, Santana-Casiano J, González-Dávila M, Vázquez J, Fernández-Salas L, Sánchez-Guillamón O, Palomino D, Presas-Navarro C (2018) Cyclic behavior associated with the degassing process at the shallow submarine volcano Tagoro, canary Islands, Spain. Geosciences 8:457. https://doi.org/10.3390/geosciences8120457

    Article  Google Scholar 

  • Fricke H, Giere O, Stetter K, Alfredsson GA, Kristjansson JK, Stoffers P, Svavarsson J (1989) Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge. Mar Biol 102:425–429. https://doi.org/10.1007/BF00428495

    Article  Google Scholar 

  • Furushima Y, Nagao M, Suzuki A, Yamamoto H, Maruyama T (2009) Periodic behavior of the bubble jet (Geyser) in the taketomi submarine hot springs of the southern part of yaeyama archipelago Japan. Mar Technol Soc J 43:13–22. https://doi.org/10.4031/MTSJ.43.3.1

    Article  Google Scholar 

  • Gaines S, Roughgarden J (1985) Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci 82:3707–3711. https://doi.org/10.1073/pnas.82.11.3707

    Article  Google Scholar 

  • García-Davis S, Reyes CP, Lagunes I, Padrón JM, Fraile-Nuez E, Fernández JJ, Díaz-Marrero AR (2021) Bioprospecting antiproliferative marine microbiota from submarine volcano Tagoro. Front Mar Sci 8:1–18. https://doi.org/10.3389/fmars.2021.687701

    Article  Google Scholar 

  • Gasol JM, Li Zweifel U, Peters F, Fuhrman JA, Hagström Å (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483. https://doi.org/10.1128/aem.65.10.4475-4483.1999

    Article  Google Scholar 

  • Gómez-Letona M, Arístegui J, Ramos AG, Montero MF, Coca J (2018) Lack of impact of the El Hierro (Canary Islands) submarine volcanic eruption on the local phytoplankton community. Sci Rep 8(4667):1–12. https://doi.org/10.1038/s41598-018-22967-6

    Article  Google Scholar 

  • González-Dávila M, Santana-Casiano JM, Millero FJ (2005) Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim Cosmochim Acta 69:83–93. https://doi.org/10.1016/j.gca.2004.05.043

    Article  Google Scholar 

  • González-Dávila M, Santana-Casiano JM, Millero FJ (2006) Competition between O2 and H2O2 in the oxidation of Fe(II) in natural waters. J Solution Chem 35:95–111. https://doi.org/10.1007/s10953-006-8942-3

    Article  Google Scholar 

  • González-Vega A, Fraile-Nuez E, Santana-Casiano JM, González-Dávila M, Escánez-Pérez J, Gómez-Ballesteros M, Tello O, Arrieta JM (2020) Significant release of dissolved inorganic nutrients from the shallow submarine volcano Tagoro (Canary Islands) based on seven-year monitoring. Front Mar Sci 6:2465. https://doi.org/10.3389/fmars.2019.00829

    Article  Google Scholar 

  • González-Vega A, Callery I, Arrieta JM, Santana-Casiano JM, Domínguez-Yanes JF, Fraile-Nuez E (2022) Severe Deoxygenation Event Caused by the 2011 Eruption of the Submarine Volcano Tagoro (El Hierro Canary Islands). Front Mar Sci 9:834691. https://doi.org/10.3389/fmars.2022.834691

  • Guieu C, Bonnet S, Petrenko A, Menkes C, Chavagnac V, Desboeufs K, Maes C, Moutin T (2018) Iron from a submarine source impacts the productive layer of the Western Tropical South Pacific (WTSP). Sci Rep 8:9075. https://doi.org/10.1038/s41598-018-27407-z

    Article  Google Scholar 

  • Hernández-León S, Gómez M, Arístegui J (2007) Mesozooplankton in the Canary current system: the coastal-ocean transition zone. Prog Oceanogr 74:397–421. https://doi.org/10.1016/j.pocean.2007.04.010

    Article  Google Scholar 

  • Longpré MA, Stix J, Klügel A, Shimizu N (2016) Mantle to surface degassing of carbon-and sulphur-rich alkaline magma at El Hierro, Canary Islands. Earth Planet Sci Lett 460:268–280. https://doi.org/10.1016/j.epsl.2016.11.043

    Article  Google Scholar 

  • Lupton JE, Delaney JR, Johnson HP, Tivey MK (1985) Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature 316:621–623. https://doi.org/10.1038/316621a0

    Article  Google Scholar 

  • Marcello J, Eugenio F, Estrada-Allis S, Sangrà P (2015) Segmentation and tracking of anticyclonic eddies during a submarine volcanic eruption using ocean colour imagery. Sensors 15:8732–8748. https://doi.org/10.3390/s150408732

    Article  Google Scholar 

  • Olivé-Abelló A, Vinha B, Machín F, Zerbetto F, Bakalis E, Fraile-Nuez E (2021) Analysis of volcanic thermohaline fluctuations of tagoro submarine volcano (El Hierro Island, canary islands, Spain). Geosciences (Switzerland) 11:374. https://doi.org/10.3390/geosciences11090374

    Article  Google Scholar 

  • Rivera J, Lastras G, Canals M, Acosta J, Arrese B, Hermida N, Micallef A, Tello O, Amblas D (2013) Construction of an oceanic island: Insights from the El Hierro (Canary Islands) 2011–2012 submarine volcanic eruption. Geology 41:355–358. https://doi.org/10.1130/G33863.1

    Article  Google Scholar 

  • Rizzo AL, Caracausi A, Chavagnac V, Nomikou P, Polymenakou PN, Mandalakis M, Kotoulas G, Magoulas A, Castillo A, Lampridou D, Marusczak N, Sonke JE (2019) Geochemistry of CO2-rich gases venting from submarine volcanoes: the case of Kolumbo (Hellenic Volcanic Arc, Greece). Front Earth Sci 7:60. https://doi.org/10.3389/feart.2019.00060

    Article  Google Scholar 

  • Rona PA, Bemis KG, Jones CD, Jackson DR, Mitsuzawa K, Silver D (2006) Entrainment and bending in a major hydrothermal plume, Main Endeavour Field, Juan de Fuca Ridge. Geophys Res Lett 33:L19313. https://doi.org/10.1029/2006GL027211

    Article  Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Millero FJ (2005) Oxidation of nanomolar level of Fe(II) with oxygen in natural waters. Environ Sci Technol 39:2073–2079. https://doi.org/10.1021/es049748y

    Article  Google Scholar 

  • Santana-Casiano JM, Fraile-Nuez E, González-Dávila M, Baker ET, Resing JA, Walker SL (2016) Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island. Sci Rep 6:1–9. https://doi.org/10.1038/srep25686

    Article  Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Fraile-Nuez E, De Armas D, González AG, Domínguez-Yanes JF, Escanez J (2013) The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci Rep 3:1140. https://doi.org/10.1038/srep01140

  • Santana-Casiano JM, González-Dávila M, Fraile-Nuez E (2018) The emissions of the Tagoro submarine volcano (Canary Islands, Atlantic Ocean): effects on the physical and chemical properties of the seawater. In: Volcanoes—geological and geophysical setting, theoretical aspects and numerical modeling, applications to industry and their impact on the human health. InTech, pp 1–21. https://doi.org/10.5772/intechopen.70422

  • Santana-González C, Santana-Casiano JM, González-Dávila M, Fraile-Nuez E (2017) Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro. Mar Chem 195:129–137. https://doi.org/10.1016/j.marchem.2017.02.001

    Article  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385. https://doi.org/10.1086/BBLv216n3p373

    Article  Google Scholar 

  • Somoza L, González FJ, Barker SJ, Madureira P, Medialdea T, de Ignacio C, Lourenço N, León R, Vázquez JT, Palomino D (2017) Evolution of submarine eruptive activity during the 2011–2012 El Hierro event as documented by hydroacoustic images and remotely operated vehicle observations. Geochem Geophys Geosyst 18:3109–3137. https://doi.org/10.1002/2016GC006733

    Article  Google Scholar 

  • Sotomayor-García A, Rueda JL, Sánchez-Guillamón O, Urra J, Vázquez JT, Palomino D, Fernández-Salas LM, López-González N, González-Porto M, Santana-Casiano JM, González-Dávila M, Fraile-Nuez E (2019) First macro-colonizers and survivors around tagoro submarine Volcano, Canary Islands, Spain. Geosci 9(1):52

    Google Scholar 

  • Sotomayor-Garcia A, Rueda JL, Sánchez-Guillamón O, Vázquez JT, Palomino D, Fernández-Salas LM, López-González N, González-Porto M, Urra J, Santana-Casiano JM, González-Dávila M, Fraile-Nuez E (2020) Geomorphic features, main habitats and associated biota on and around the newly formed Tagoro submarine volcano, Canary Islands, Seafloor Geomorphology as Benthic Habitat. (pp 835–846) Elsevier

    Google Scholar 

  • Speer KG (1989) a forced baroclinic vortex around a hydrothermal plume. Geophys Res Lett 16:461–464. https://doi.org/10.1029/GL016i005p00461

    Article  Google Scholar 

  • Tassi F, Capaccioni B, Caramanna G, Cinti D, Montegrossi G, Pizzino L, Quattrocchi F, Vaselli O (2009) Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: origin of hydrothermal fluids and implications for volcanic surveillance. Appl Geochem 24:246–254. https://doi.org/10.1016/j.apgeochem.2008.11.015

    Article  Google Scholar 

  • Thompson G (1983) Hydrothermal Fluxes in the Ocean. In: chemical Oceanography. Elsevier, pp 271–337. https://doi.org/10.1016/B978-0-12-588608-6.50011-0

  • Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. In: Presented at the integrative and comparative biology, pp 525–537. https://doi.org/10.1093/icb/ics101

  • Uiblein F, Bordes F (1999) Complex trophic interactions around ocean islands. Ocean Challenge

    Google Scholar 

  • Wilson ST, Hawco NJ, Armbrust EV, Barone B, Björkman KM, Boysen AK, Burgos M, Burrell TJ, Casey JR, DeLong EF, Dugenne M, Dutkiewicz S, Dyhrman ST, Ferrón S, Follows MJ, Foreman RK, Funkey CP, Harke MJ, Henke BA, Hill CN, Hynes AM, Ingalls AE, Jahn O, Kelly RL, Knapp AN, Letelier RM, Ribalet F, Shimabukuro EM, Tabata RKS, Turk-Kubo KA, White AE, Zehr JP, John S, Karl DM (2019) Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science 365:1040–1044. https://doi.org/10.1126/science.aax4767

    Article  Google Scholar 

  • Witt V, Ayris PM, Damby DE, Cimarelli C, Kueppers U, Dingwell DB, Wörheide G (2017) Volcanic ash supports a diverse bacterial community in a marine mesocosm. Geobiology 15:453–463. https://doi.org/10.1111/gbi.12231

    Article  Google Scholar 

Download references

Acknowledgements

This ten years monitoring program over Tagoro submarine volcano has been possible thanks to the funding of several institutions and organizations: (i) Ministerio de Economía y Competitividad del Gobierno de España (MINECO) and FEDER through VULCANO-I (CTM2012-36317), VULCANO-II (CTM2014-51837-R), CETHOBATH (CGL2009-1311218), EXPLORA-CIENCIA (CGL2014- 61775-EXP), ECOFEMA (CTM2010-19517), EACFe (CTM2014-52342-P) projects. (ii) The Spanish Institute of Oceanography (IEO-CSIC) through BIMBACHE (IEO-2011-2012), RAPROCAN-III (IEO-2010-2012), VULCANA-I (IEO-2015- 2017), VULCANA-II (IEO-2018-2020) and VULCANA-III (IEO-CSIC-2021-2023) projects. (iii) Special funding from IEO-CSIC for the use of the ROV Liropus 2000 in several cruises. (iv) Fundación Caja-Canarias through CYCLOVENT (2019SP18) project. (v) The European project CARBOCHANGE-264879. We would also like to thank the extraordinary collaboration with the Secretaría General de Pesca (MAPA) from the Spanish Ministry, Cabildo de El Hierro, Ayuntamiento de El Pinar, Marine Reserve of La Restinga-Mar de las Calmas, SASEMAR, and every single person in El Hierro island without its help and support, this long monitoring would never have been carried out. Finally, the authors are grateful to Pablo González, editor of this book, for his support during the writing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Fraile-Nuez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fraile-Nuez, E. et al. (2023). Ten Years of Intense Physical–Chemical, Geological and Biological Monitoring Over the Tagoro Submarine Volcano Marine Ecosystem (Eruptive and Degassing Stages). In: González, P.J. (eds) El Hierro Island. Active Volcanoes of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-35135-8_8

Download citation

Publish with us

Policies and ethics