Skip to main content

Molecular Pathology of Liver Tumors

  • Chapter
  • First Online:
Molecular Surgical Pathology

Abstract

The different cell types of the liver provide the framework for a variety of benign and malignant tumor entities, each of which shows a more or less defined spectrum of associated molecular alterations. Among the malignant neoplasm, carcinomas are prevailing, with malignant mesenchymal tumors being exceedingly rare. Hepatocellular carcinoma (HCC) is one of the most frequent tumors worldwide, and, like intrahepatic cholangiocarcinoma (iCCA), it shows a rising incidence. For both tumor types, specific risk factors and molecular subgroups have been identified. Hepatocellular adenoma is a paradigm entity in terms of morphomolecular subclassification, which has recently been adopted to facilitate the subtyping of some hepatocellular carcinomas. Molecular markers support the differential diagnosis of highly differentiated hepatocellular tumors, and the detection of genetic rearrangement may be helpful in subtyping mesenchymal liver tumors. The role of predictive (therapy-guiding) molecular markers is rising in malignant liver tumors and already has its position in iCCA; concerning HCC, this field is still emerging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Further Reading

  • Agaimy A, Daum O, Markl B, Lichtmannegger I, Michal M, Hartmann A. SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol. 2016;40:544–53.

    Article  PubMed  Google Scholar 

  • Al Nassan A, Sughayer M, Matalka I, et al. INI1 (BAF 47) immunohistochemistry is an essential diagnostic tool for children with hepatic tumors and low alpha fetoprotein. J Pediatr Hematol Oncol. 2010;32:e79–81.

    Article  PubMed  Google Scholar 

  • Alves VAF, Rimola J. Malignant vascular tumors of the liver in adults. Semin Liver Dis. 2019;39:1–12.

    Article  PubMed  Google Scholar 

  • Antonescu CR, Dickson BC, Sung YS, et al. Recurrent YAP1 and MAML2 gene rearrangements in retiform and composite hemangioendothelioma. Am J Surg Pathol. 2020;44:1677–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayard Q, Caruso S, Couchy G, et al. Recurrent chromosomal rearrangements of ROS1, FRK and IL6 activating JAK/STAT pathway in inflammatory hepatocellular adenomas. Gut. 2020;69:1667–76.

    Article  CAS  PubMed  Google Scholar 

  • Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.

    Article  CAS  PubMed  Google Scholar 

  • Calderaro J, Couchy G, Imbeaud S, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol. 2017;67:727–38.

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–41. e1323

    Article  Google Scholar 

  • Chaudhary P, Bhadana U, Singh RA, Ahuja A. Primary hepatic angiosarcoma. Eur J Surg Oncol. 2015;41:1137–43.

    Article  CAS  PubMed  Google Scholar 

  • Di Tommaso L, Destro A, Fabbris V, et al. Diagnostic accuracy of clathrin heavy chain staining in a marker panel for the diagnosis of small hepatocellular carcinoma. Hepatology. 2011;53:1549–57.

    Article  PubMed  Google Scholar 

  • Durnez A, Verslype C, Nevens F, et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology. 2006;49:138–51.

    Article  CAS  PubMed  Google Scholar 

  • Eichenmuller M, Trippel F, Kreuder M, et al. The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J Hepatol. 2014;61:1312–20.

    Article  PubMed  Google Scholar 

  • Errani C, Zhang L, Sung YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50:644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan B, Malato Y, Calvisi DF, et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 2012;122:2911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farshidfar F, Zheng S, Gingras MC, et al. Integrative genomic analysis of Cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 2017;18:2780–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazlollahi L, Hsiao SJ, Kochhar M, Mansukhani MM, Yamashiro DJ, Remotti HE. Malignant rhabdoid tumor, an aggressive tumor often misclassified as small cell variant of hepatoblastoma. Cancers (Basel). 2019;11:1992.

    Article  CAS  PubMed  Google Scholar 

  • Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  • Flucke U, Vogels RJ, de saint Aubain Somerhausen N, et al. Epithelioid Hemangioendothelioma: clinicopathologic, immunhistochemical, and molecular genetic analysis of 39 cases. Diagn Pathol. 2014;9:131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukayama M, Miettinnen M, Lazar AJ. Mesenchymal tumours of the digestive system. In: Lokuhetty D, White VA, Watanabe R, Cree IA, editors. WHO classification of tumours—digestive system tumours, vol. 1. Lyon: WHO Press; 2019. p. 433–98.

    Google Scholar 

  • Gill RM, Buelow B, Mather C, et al. Hepatic small vessel neoplasm, a rare infiltrative vascular neoplasm of uncertain malignant potential. Hum Pathol. 2016;54:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goeppert B, Folseraas T, Roessler S, et al. Genomic characterization of cholangiocarcinoma in primary sclerosing cholangitis reveals therapeutic opportunities. Hepatology. 2020;72:1253–66.

    Article  CAS  PubMed  Google Scholar 

  • Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooks KB, Audoux J, Fazli H, et al. New insights into diagnosis and therapeutic options for proliferative hepatoblastoma. Hepatology. 2018;68:89–102.

    Article  CAS  PubMed  Google Scholar 

  • Huang SC, Chuang HC, Chen TD, et al. Alterations of the mTOR pathway in hepatic angiomyolipoma with emphasis on the epithelioid variant and loss of heterogeneity of TSC1/TSC2. Histopathology. 2015;66:695–705.

    Article  PubMed  Google Scholar 

  • Jimbo N, Nishigami T, Noguchi M, et al. Hepatic angiomyolipomas may overexpress TFE3, but have no relevant genetic alterations. Hum Pathol. 2017;61:41–8.

    Article  CAS  PubMed  Google Scholar 

  • Joseph NM, Brunt EM, Marginean C, et al. Frequent GNAQ and GNA14 mutations in hepatic small vessel neoplasm. Am J Surg Pathol. 2018;42:1201–7.

    Article  PubMed  Google Scholar 

  • Joseph NM, Tsokos CG, Umetsu SE, et al. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J Pathol. 2019;248:164–78.

    Article  CAS  PubMed  Google Scholar 

  • Kuo FY, Huang HY, Chen CL, Eng HL, Huang CC. TFE3-rearranged hepatic epithelioid hemangioendothelioma-a case report with immunohistochemical and molecular study. APMIS. 2017;125:849–53.

    Article  PubMed  Google Scholar 

  • Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology. 2018;68:1025–41.

    Article  CAS  PubMed  Google Scholar 

  • Longerich T, Mueller MM, Breuhahn K, Schirmacher P, Benner A, Heiss C. Oncogenetic tree modeling of human hepatocarcinogenesis. Int J Cancer. 2012;130:575–83.

    Article  CAS  PubMed  Google Scholar 

  • Lotfalla MM, Folpe AL, Fritchie KJ, et al. Hepatic YAP1-TFE3 rearranged epithelioid hemangioendothelioma. Case Rep Gastrointest Med. 2019;2019:7530845.

    PubMed  PubMed Central  Google Scholar 

  • Luchini C, Pelosi G, Scarpa A, et al. Neuroendocrine neoplasms of the biliary tree, liver and pancreas: a pathological approach. Pathologica. 2021;113:28–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moeini A, Sia D, Zhang Z, et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol. 2017;66:952–61.

    Article  CAS  PubMed  Google Scholar 

  • Mueller C, Waldburger N, Stampfl U, et al. Non-invasive diagnosis of hepatocellular carcinoma revisited. Gut. 2018;67:991–3.

    Article  CAS  PubMed  Google Scholar 

  • Mullhaupt B, Durand F, Roskams T, Dutkowski P, Heim M. Is tumor biopsy necessary? Liver Transpl. 2011;17(Suppl 2):S14–25.

    Article  PubMed  Google Scholar 

  • Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–10.

    Article  CAS  PubMed  Google Scholar 

  • Nault JC, Couchy G, Balabaud C, et al. Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation. Gastroenterology. 2017;152:880–94. e886

    Article  CAS  PubMed  Google Scholar 

  • International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49:658–64.

    Article  Google Scholar 

  • Okamura R, Kurzrock R, Mallory RJ, et al. Comprehensive genomic landscape and precision therapeutic approach in biliary tract cancers. Int J Cancer. 2021;148:702–12.

    Article  CAS  PubMed  Google Scholar 

  • Ong CK, Subimerb C, Pairojkul C, et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet. 2012;44:690–3.

    Article  CAS  PubMed  Google Scholar 

  • Paradis V, Fukayama M, Park YN, Schirmacher P. Tumours of the liver and intrahepatic bile ducts. In: Lokuhetty D, White VA, Watanabe R, Cree IA, editors. WHO classification of tumours—digestive system tumours, vol. 1. Lyon: WHO Press; 2019. p. 215–64.

    Google Scholar 

  • Saha SK, Parachoniak CA, Ghanta KS, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seehawer M, Heinzmann F, D’Artista L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature. 2018;562:69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi M, Seki M, Kawai T, et al. Integrated multiomics analysis of hepatoblastoma unravels its heterogeneity and provides novel druggable targets. NPJ Precis Oncol. 2020;4:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sempoux C, Gouw ASH, Dunet V, Paradis V, Balabaud C, Bioulac-Sage P. Predictive patterns of glutamine synthetase immunohistochemical staining in CTNNB1-mutated hepatocellular adenomas. Am J Surg Pathol. 2021;45:477–87.

    Article  PubMed  Google Scholar 

  • Sumazin P, Chen Y, Trevino LR, et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology. 2017;65:104–21.

    Article  CAS  PubMed  Google Scholar 

  • Tate G, Suzuki T, Mitsuya T. Mutation of the PTEN gene in a human hepatic angiosarcoma. Cancer Genet Cytogenet. 2007;178:160–2.

    Article  CAS  PubMed  Google Scholar 

  • Verlingue L, Malka D, Allorant A, et al. Precision medicine for patients with advanced biliary tract cancers: an effective strategy within the prospective MOSCATO-01 trial. Eur J Cancer. 2017;87:122–30.

    Article  PubMed  Google Scholar 

  • Vokuhl C, Oyen F, Haberle B, von Schweinitz D, Schneppenheim R, Leuschner I. Small cell undifferentiated (SCUD) hepatoblastomas: all malignant rhabdoid tumors? Genes Chromosomes Cancer. 2016;55:925–31.

    Article  CAS  PubMed  Google Scholar 

  • Xu AM, Zhang SH, Zheng JM, Zheng WQ, Wu MC. Pathological and molecular analysis of sporadic hepatic angiomyolipoma. Hum Pathol. 2006;37:735–41.

    Article  CAS  PubMed  Google Scholar 

  • Xue R, Chen L, Zhang C, et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Cancer Cell. 2019;35:932–47. e938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Huang X, Lai C, et al. SET domain containing 1B gene is mutated in primary hepatic neuroendocrine tumors. Int J Cancer. 2019;145:2986–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasir S, Torbenson MS. Angiosarcoma of the liver: clinicopathologic features and morphologic patterns. Am J Surg Pathol. 2019;43:581–90.

    Article  PubMed  Google Scholar 

  • Yong KJ, Chai L, Tenen DG. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med. 2013;369:1171–2.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Longerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longerich, T., Schirmacher, P. (2023). Molecular Pathology of Liver Tumors. In: Cheng, L., Netto, G.J., Eble, J.N. (eds) Molecular Surgical Pathology. Springer, Cham. https://doi.org/10.1007/978-3-031-35118-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35118-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35117-4

  • Online ISBN: 978-3-031-35118-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics