Skip to main content

Molecular Pathology of Endocrine Tumors

  • Chapter
  • First Online:
Molecular Surgical Pathology
  • 641 Accesses

Abstract

The understanding of the molecular pathology of endocrine tumors has advanced greatly in recent years. Increasing utilization of technologies, such as fluorescence in situ hybridization, polymerase chain reaction, comparative genomic hybridization, loss of heterozygosity analyses as well as gene expression profiling and genomic analysis, continues to advance the field of endocrine pathology. Increased understanding of disease processes and correlation of morphologic and immunohistochemical findings have improved the diagnostic and therapeutic approach to many tumors with increasing significance in personalized medicine. Syndromic and nonsyndromic tumors associated with germline susceptibility are particularly important in the field of endocrine pathology and involve numerous endocrine and neuroendocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Suggested Readings

Thyroid Tumors

  • Abe I, Lam AK. Anaplastic thyroid carcinoma: current issues in genomics and therapeutics. Curr Oncol Rep. 2021;23(3):31.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Jiao Y, Sausen M, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98(2):E364–9.

    Article  CAS  PubMed  Google Scholar 

  • Amacher AM, Goyal B, Lewis JS, et al. Prevalence of a hobnail pattern in papillary, poorly differentiated, and anaplastic thyroid carcinoma: a possible manifestation of high-grade transformation. Am J Surg Pathol. 2015;39(2):260–5.

    Article  PubMed  Google Scholar 

  • Ambrosi F, Righi A, Ricci C, et al. Hobnail variant of papillary thyroid carcinoma: a literature review. Endocr Pathol. 2017;28(4):293–301.

    Article  CAS  PubMed  Google Scholar 

  • Apel RL, Asa SL, LiVolsi VA. Papillary Hürthle cell carcinoma with lymphocytic stroma. “Warthin-like tumor” of the thyroid. Am J Surg Pathol. 1995;19(7):810–4.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong MJ, Yang H, Yip L, et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24(9):1369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asioli S, Erickson LA, Righi A, et al. Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod Pathol. 2010a;23(9):1269–78.

    Article  PubMed  Google Scholar 

  • Asioli S, Erickson LA, Sebo TJ, et al. Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol. 2010b;34(1):44–52.

    Article  PubMed  Google Scholar 

  • Asioli S, Erickson LA, Righi A, et al. Papillary thyroid carcinoma with hobnail features: histopathologic criteria to predict aggressive behavior. Hum Pathol. 2013;44(3):320–8.

    Article  PubMed  Google Scholar 

  • Bai S, Baloch ZW, Samulski TD, et al. Poorly differentiated oncocytic (hürthle cell) follicular carcinoma: an institutional experience. Endocr Pathol. 2015;26(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  • Baloch Z, Mete O, Asa SL. Immunohistochemical biomarkers in thyroid pathology. Endocr Pathol. 2018;29(2):91–112.

    Article  CAS  PubMed  Google Scholar 

  • Barletta JA, Nosé V, Sadow PM. Genomics and epigenomics of medullary thyroid carcinoma: from sporadic disease to familial manifestations. Endocr Pathol. 2021;32(1):35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10:19–23.

    Article  CAS  PubMed  Google Scholar 

  • Berho M, Suster S. The oncocytic variant of papillary carcinoma of the thyroid: a clinicopathologic study of 15 cases. Hum Pathol. 1997;28(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  • Boichard A, Croux L, Al Ghuzlan A, et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab. 2012;97(10):E2031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boos LA, Dettmer M, Schmitt A, et al. Diagnostic and prognostic implications of the PAX8-PPARγ translocation in thyroid carcinomas-a TMA-based study of 226 cases. Histopathology. 2013;63(2):234–41.

    Article  PubMed  Google Scholar 

  • Borrello MG, Smith DP, Pasini B, et al. RET activation by germline MEN2A and MEN2B mutations. Oncogene. 1995;11:2419–27.

    CAS  PubMed  Google Scholar 

  • Boyraz B, Sadow PM, Asa SL, et al. Cribriform-morular thyroid carcinoma is a distinct thyroid malignancy of uncertain cytogenesis. Endocr Pathol. 2021;32(3):327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameselle-Teijeiro JM, Peteiro-González D, Caneiro-Gómez J, et al. Cribriform-morular variant of thyroid carcinoma: a neoplasm with distinctive phenotype associated with the activation of the WNT/β-catenin pathway. Mod Pathol. 2018;31(8):1168–79.

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  Google Scholar 

  • Capezzone M, Robenshtok E, Cantara S, et al. Familial non-medullary thyroid cancer: a critical review. J Endocrinol Invest. 2021;44(5):943–50.

    Article  CAS  PubMed  Google Scholar 

  • Carney JA, Ryan J, Goellner JR. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol. 1987;11(8):583–91.

    Article  CAS  PubMed  Google Scholar 

  • Carney JA, Hirokawa M, Lloyd RV, et al. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol. 2008;32(12):1877–89.

    Article  PubMed  Google Scholar 

  • Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(1):213–20.

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Faquin WC, Lloyd RV, et al. Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod Pathol. 2011;24(5):739–49.

    Article  CAS  PubMed  Google Scholar 

  • Chou A, Fraser S, Toon CW, et al. A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol. 2015;39(5):652–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kock L, Sabbaghian N, Soglio DB, et al. Exploring the association Between DICER1 mutations and differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2014;99(6):E1072–7.

    Article  PubMed  Google Scholar 

  • Deeken-Draisey A, Yang GY, Gao J, et al. Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum Pathol. 2018;82:140–8.

    Article  CAS  PubMed  Google Scholar 

  • Dettmer M, Schmitt A, Steinert H, et al. Poorly differentiated oncocytic thyroid carcinoma--diagnostic implications and outcome. Histopathology. 2012;60(7):1045–51.

    Article  PubMed  Google Scholar 

  • Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3:9–14.

    Article  CAS  PubMed  Google Scholar 

  • Doerfler WR, Nikitski AV, Morariu EM, et al. Molecular alterations in Hürthle cell nodules and preoperative cancer risk. Endocr Relat Cancer. 2021;28(5):301–9.

    Article  CAS  PubMed  Google Scholar 

  • Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:4440–5.

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93(3):682–7.

    Article  CAS  PubMed  Google Scholar 

  • Eng C, Smith DP, Mulligan LM, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet. 1994;3:237–47.

    Article  CAS  PubMed  Google Scholar 

  • Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276:1575–9.

    Article  CAS  PubMed  Google Scholar 

  • Erickson LA, Jalal SM, Goellner JR, et al. Analysis of Hurthle cell neoplasms of the thyroid by interphase fluorescence in situ hybridization. Am J Surg Pathol. 2001;25(7):911–7.

    Article  CAS  PubMed  Google Scholar 

  • Erickson LA, Vrana JA, Theis J, et al. Analysis of amyloid in medullary thyroid carcinoma by mass spectrometry-based proteomic analysis. Endocr Pathol. 2015;26(4):291–5.

    Article  CAS  PubMed  Google Scholar 

  • Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol. 2003;162(4):1053–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganly I, McFadden DG. short review: genomic alterations in Hürthle cell carcinoma. Thyroid. 2019 Apr;29(4):471–9.

    Article  PubMed  Google Scholar 

  • Ganly I, Wang L, Tuttle RM, et al. Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum Pathol. 2015;46(5):657–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganly I, Makarov V, Deraje S, et al. Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell. 2018;34(2):256–270.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparre G, Porcelli AM, Bonora E, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A. 2007;104(21):9001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghossein RA, Leboeuf R, Patel KN, et al. Tall cell variant of papillary thyroid carcinoma without extrathyroid extension: biologic behavior and clinical implications. Thyroid. 2007;17(7):655–61.

    Article  PubMed  Google Scholar 

  • Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24(44):6646–56.

    Article  CAS  PubMed  Google Scholar 

  • Gnemmi V, Renaud F, Do Cao C, et al. Poorly differentiated thyroid carcinomas: application of the Turin proposal provides prognostic results similar to those from the assessment of high-grade features. Histopathology. 2014;64(2):263–73.

    Article  PubMed  Google Scholar 

  • Gopal RK, Kübler K, Calvo SE, et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hürthle cell carcinoma. Cancer Cell. 2018;34(2):242–255.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowrishankar S, Pai SA, Carney JA. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology. 2008 Mar;52(4):529–31.

    Article  CAS  PubMed  Google Scholar 

  • Gucer H, Caliskan S, Kefeli M, et al. Do you know the details of your PAX8 antibody? Monoclonal PAX8 (MRQ-50) is not expressed in a series of 45 medullary thyroid carcinomas. Endocr Pathol. 2020;31(1):33–8.

    Article  PubMed  Google Scholar 

  • Guilmette J, Nosé V. Hereditary and familial thyroid tumours. Histopathology. 2018;72(1):70–81.

    Article  PubMed  Google Scholar 

  • Hara H, Fulton N, Yashiro T, et al. N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 1994;116:1010–6.

    CAS  PubMed  Google Scholar 

  • Harach HR, Williams GT, Williams ED. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology. 1994;25(6):549–61.

    Article  CAS  PubMed  Google Scholar 

  • Haugen BR, Sherman SI. Evolving approaches to patients with advanced differentiated thyroid cancer. Endocr Rev. 2013;34(3):439–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa M, Carney JA. Cell membrane and cytoplasmic staining for MIB-1 in hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol. 2000;24(4):575–8.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Hirokawa M, Masuoka H, et al. Prognostic factors of minimally invasive follicular thyroid carcinoma: extensive vascular invasion significantly affects patient prognosis. Endocr J. 2013;60(5):637–42.

    Article  PubMed  Google Scholar 

  • Karunamurthy A, Panebianco F. J Hsiao S, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazaure HS, Roman SA, Sosa JA. Medullary thyroid microcarcinoma: a population-level analysis of 310 patients. Cancer. 2012;118(3):620–7.

    Article  PubMed  Google Scholar 

  • Kim TH, Kim YE, Ahn S, et al. TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer. 2016;23(10):813–23.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee M, Kwon AY, et al. Molecular genotyping of the non-invasive encapsulated follicular variant of papillary thyroid carcinoma. Histopathology. 2018;72(4):648–61.

    Article  PubMed  Google Scholar 

  • Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  • Kraus C, Liehr T, Hulsken J, et al. Localization of the human β-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics. 1994;23:272–4.

    Article  CAS  PubMed  Google Scholar 

  • Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai WA, Hang JF, Liu CY, et al. PAX8 expression in anaplastic thyroid carcinoma is less than those reported in early studies: a multi-institutional study of 182 cases using the monoclonal antibody MRQ-50. Virchows Arch. 2020a;476(3):431–7.

    Article  CAS  PubMed  Google Scholar 

  • Lai WA, Liu CY, Lin SY, et al. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers (Basel). 2020b;12(7):1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AK. Squamous cell carcinoma of thyroid: a unique type of cancer in World Health Organization Classification. Endocr Relat Cancer. 2020;27(6):R177–92.

    Article  CAS  PubMed  Google Scholar 

  • Lam AK, Fridman M. Characteristics of cribriform morular variant of papillary thyroid carcinoma in post-Chernobyl affected region. Hum Pathol. 2018;74:170–7.

    Article  PubMed  Google Scholar 

  • Lam AK, Montone KT, Nolan KA, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;29:565–8.

    Google Scholar 

  • Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauper JM, Krause A, Vaughan TL, et al. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laury AR, Bongiovanni M, Tille JC, et al. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid. 2011;21(2):135–44.

    Article  PubMed  Google Scholar 

  • Leeman-Neill RJ, Brenner AV, Little MP, et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 2013;119(10):1792–9.

    Article  CAS  PubMed  Google Scholar 

  • Leonardo E, Volante M, Barbareschi M, et al. Cell membrane reactivity of MIB-1 antibody to Ki67 in human tumors: fact or artifact? Appl Immunohistochem Mol Morphol. 2007;15(2):220–3.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Carcangiu ML, Rosai J. Abnormal intracellular and extracellular distribution of basement membrane material in papillary carcinoma and hyalinizing trabecular tumors of the thyroid: implication for deregulation of secretory pathways. Hum Pathol. 1997;28(12):1366–72.

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Ma H, Ma M, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11(9):5888–96.

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Singh B, Tallini G, et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer. 2006;107(6):1255–64.

    Article  PubMed  Google Scholar 

  • Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zeng W, Chen T, et al. A comparison of the clinicopathological features and prognoses of the classical and the tall cell variant of papillary thyroid cancer: a meta-analysis. Oncotarget. 2017;8(4):6222–32.

    Article  PubMed  Google Scholar 

  • Lui WO, Zeng L, Rehrmann V, et al. CREB3L2-PPARgamma fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res. 2008;68(17):7156–64.

    Article  CAS  PubMed  Google Scholar 

  • Macerola E, Poma AM, Vignali P, et al. Molecular genetics of follicular-derived thyroid cancer. Cancers (Basel). 2021;13(5):1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maenhaut C, Detours V, Dom G, et al. Gene expression profiles for radiation-induced thyroid cancer. Clin Oncol (R Coll Radiol). 2011;23(4):282–8.

    Article  CAS  PubMed  Google Scholar 

  • Marchiò C, Da Cruz PA, Gularte-Merida R, et al. PAX8-GLIS3 gene fusion is a pathognomonic genetic alteration of hyalinizing trabecular tumors of the thyroid. Mod Pathol. 2019;32(12):1734–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melo M, da Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moses W, Weng J, Kebebew E. Prevalence, clinicoPathologic Features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid. 2011;21(4):367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moura MM, Cavaco BM, Pinto AE, et al. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab. 2011;96(5):E863–8.

    Article  CAS  PubMed  Google Scholar 

  • Nabhan F, Ringel MD. Thyroid nodules and cancer management guidelines: comparisons and controversies. Endocr Relat Cancer. 2017;24(2):R13–26.

    Article  PubMed  Google Scholar 

  • Nakamura N, Carney JA, Jin L, et al. RASSF1A and NORE1A methylation and BRAFV600E mutations in thyroid tumors. Lab Invest. 2005;85:1065–75.

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Kitamura Y, Shimizu K, et al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer. 1999;25:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Namba H, Gutman RA, Matsuo K, et al. H-ras protooncogene mutations in human thyroid neoplasms. J Clin Endocrinol Metab. 1990;71:223–9.

    Article  CAS  PubMed  Google Scholar 

  • Nath MC, Erickson LA. Aggressive variants of papillary thyroid carcinoma: hobnail, tall cell, columnar, and solid. Adv Anat Pathol. 2018;25(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  • Ngeow J, Mester J, Rybicki LA, et al. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolson NG, Murtha TD, Dong W, et al. Comprehensive genetic analysis of follicular thyroid carcinoma predicts prognosis independent of histology. J Clin Endocrinol Metab. 2018;103(7):2640–50.

    Article  PubMed  Google Scholar 

  • Nieminen TT, Walker CJ, Olkinuora A, et al. Thyroid carcinomas that occur in familial adenomatous polyposis patients recurrently harbor somatic variants in APC, BRAF, and KTM2D. Thyroid. 2020;30(3):380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  • Nikiforov YE, Bove KE, Rowland JM, et al. RET/PTC1 and RET/PTC3 rearrangements are associated with different biological behavior of papillary thyroid carcinoma (abstract). Mod Pathol. 2000;13:73A.

    Google Scholar 

  • Nikiforov YE, Erickson LA, Nikiforova MN, et al. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol. 2001;25(12):1478–84.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8:83–95.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8–PPAR gamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–23.

    Article  PubMed  Google Scholar 

  • Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003a;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8–PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003b;88:2318–26.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Nikitski AV, Panebianco F, et al. GLIS rearrangement is a genomic hallmark of hyalinizing trabecular tumor of the thyroid gland. Thyroid. 2019;29(2):161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki Y, Yamamoto H, Iwasaki T, et al. Clinicopathological features and immunohistochemical utility of NTRK-, ALK-, and ROS1-rearranged papillary thyroid carcinomas and anaplastic thyroid carcinomas. Hum Pathol. 2020;106:82–92.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi R, Kawahara K, Namimatsu S, et al. Clinicopathological significance of a solid component in papillary thyroid carcinoma. Histopathology. 2017;70(5):775–81.

    Article  PubMed  Google Scholar 

  • Pacini F, Elisei R, Romei C, et al. RET proto-oncogene mutations in thyroid carcinomas: clinical relevance. J Endocrinol Invest. 2000;23(5):328–38.

    Article  CAS  PubMed  Google Scholar 

  • Panebianco F, Nikitski AV, Nikiforova MN, et al. Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer. 2019;26(11):803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekova B, Sykorova V, Mastnikova K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers (Basel). 2021;13(8):1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podda M, Saba A, Porru F, et al. Follicular thyroid carcinoma: differences in clinical relevance between minimally invasive and widely invasive tumors. World J Surg Oncol. 2015;13:193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Proietti A, Sartori C, Macerola E, et al. Low frequency of TERT promoter mutations in a series of well-differentiated follicular-patterned thyroid neoplasms. Virchows Arch. 2017;471(6):769–73.

    Article  CAS  PubMed  Google Scholar 

  • Rivera M, Tuttle RM, Patel S, et al. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid. 2009;19(2):119–27.

    Article  PubMed  Google Scholar 

  • Rivera M, Ricarte-Filho J, Knauf J, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010a;23(9):1191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera M, Ricarte-Filho J, Patel S, et al. Encapsulated thyroid tumors of follicular cell origin with high grade features (high mitotic rate/tumor necrosis): a clinicopathologic and molecular study. Hum Pathol. 2010b;41(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg HJ, Goellner JR, Carney JA. Hyalinizing trabecular adenoma of the thyroid gland: recognition and characterization of its cytoplasmic yellow body. Am J Surg Pathol. 1999;23(1):118–25.

    Article  CAS  PubMed  Google Scholar 

  • Salvatore G, Chiappetta G, Nikiforov YE, et al. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-raf and N-ras point mutations. Eur J Cancer. 2005;41(5):816–21.

    Article  CAS  PubMed  Google Scholar 

  • Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; a novel rearrangement version of the RET protooncogene in a human thyroid papillary carcinoma. Oncogene. 1994;9:509–16.

    CAS  PubMed  Google Scholar 

  • Sheu SY, Schwertheim S, Worm K, et al. Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod Pathol. 2007;20(7):779–87.

    Article  CAS  PubMed  Google Scholar 

  • Soares P, Fonseca E, Wynford-Thomas D, et al. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol. 1998;185:71–8.

    Article  CAS  PubMed  Google Scholar 

  • Sohn SY, Lee JJ, Lee JH. Molecular profile and clinicopathologic features of follicular variant papillary thyroid carcinoma. Pathol Oncol Res. 2020;26(2):927–36.

    Article  CAS  PubMed  Google Scholar 

  • Song T, Chen L, Zhang H, et al. Multimodal treatment based on thyroidectomy improves survival in patients with metastatic anaplastic thyroid carcinoma: a SEER analysis from 1998 to 2015. Gland Surg. 2020;9(5):1205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suchy B, Waldmann V, Klugbauer S, et al. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br J Cancer. 1998;77:952–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo Yamashita T, Baky FJ, McKenzie TJ, et al. Occurrence and natural history of thyroid cancer in patients with cowden syndrome. Eur Thyroid J. 2020;9(5):243–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng L, Deng W, Lu J, et al. Hobnail variant of papillary thyroid carcinoma: molecular profiling and comparison to classical papillary thyroid carcinoma, poorly differentiated thyroid carcinoma and anaplastic thyroid carcinoma. Oncotarget. 2017;8(13):22023–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Us-Krasovec M, Golouh R. Papillary thyroid carcinoma with exuberant nodular fasciitis-like stroma in a fine needle aspirate. A case report. Acta Cytol. 1999;43(6):1101–4.

    Article  CAS  PubMed  Google Scholar 

  • Van Hengel J, Nollet F, Berx G, et al. Assignment of the human β-catenin gene (CTNNB1) to 3p22–>p21.3 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;70:68–70.

    Article  PubMed  Google Scholar 

  • Vanzati A, Mercalli F, Rosai J. The "sprinkling" sign in the follicular variant of papillary thyroid carcinoma: a clue to the recognition of this entity. Arch Pathol Lab Med. 2013;137(12):1707–9.

    Article  PubMed  Google Scholar 

  • Villar-Taibo R, Peteiro-González D, Cabezas-Agrícola JM, et al. Aggressiveness of the tall cell variant of papillary thyroid carcinoma is independent of the tumor size and patient age. Oncol Lett. 2017;13(5):3501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volante M, Collini P, Nikiforov YE, et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007;31(8):1256–64.

    Article  PubMed  Google Scholar 

  • Volante M, Lam AK, Papotti M, et al. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol. 2021;32(1):63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuong HG, Odate T, Duong UNP, et al. Prognostic importance of solid variant papillary thyroid carcinoma: A systematic review and meta-analysis. Head Neck. 2018a;40(7):1588–97.

    Article  PubMed  Google Scholar 

  • Vuong HG, Odate T, Ngo HTT, et al. Clinical significance of RET and RAS mutations in sporadic medullary thyroid carcinoma: a meta-analysis. Endocr Relat Cancer. 2018b;25(6):633–41.

    Article  PubMed  Google Scholar 

  • Wells SA, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenig BM, Thompson LD, Adair CF, et al. Thyroid papillary carcinoma of columnar cell type: a clinicopathologic study of 16 cases. Cancer. 1998;82(4):740–53.

    Article  CAS  PubMed  Google Scholar 

  • Wong KS, Dong F, Telatar M, et al. Papillary thyroid carcinoma with high-grade features versus poorly differentiated thyroid carcinoma: an analysis of clinicopathologic and molecular features and outcome. Thyroid. 2021;31(6):933–40.

    Article  CAS  PubMed  Google Scholar 

  • Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014 Sep;32(25):2718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Wang L, Tuttle RM, et al. Prognostic impact of extent of vascular invasion in low-grade encapsulated follicular cell-derived thyroid carcinomas: a clinicopathologic study of 276 cases. Hum Pathol. 2015;46(12):1789–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B, Fuchs T, Dogan S, et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020;30(10):1505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakushina VD, Lerner LV, Lavrov AV. Gene fusions in thyroid cancer. Thyroid. 2018;28(2):158–67.

    Article  PubMed  Google Scholar 

  • Yang J, Barletta JA. Anaplastic thyroid carcinoma. Semin Diagn Pathol. 2020;37(5):248–56.

    Article  PubMed  Google Scholar 

  • Zhou X, Zheng Z, Chen C, et al. Clinical characteristics and prognostic factors of Hurthle cell carcinoma: a population based study. BMC Cancer. 2020;20(1):407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Ciampi R, Nikiforova MN, et al. Prevalence of Ret/Ptc rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91:3603–10.

    Article  CAS  PubMed  Google Scholar 

Parathyroid Tumors

  • Al-Salameh A, Cadiot G, Calender A, et al. Clinical aspects of multiple endocrine neoplasia type 1. Nat Rev Endocrinol. 2021;17(4):207–24.

    Article  PubMed  Google Scholar 

  • Arnold A, Kim HG, Gaz RD, et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest. 1989;83:2034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arribas B, Cristobal E, Alcazar JA, et al. p53/MDM2 pathway aberrations in parathyroid tumors: p21(WAF-1) and MDM2 are frequently overexpressed in parathyroid adenomas. Endocr Pathol. 2000;11(3):251–7.

    Article  CAS  PubMed  Google Scholar 

  • Brewer K, Costa-Guda J, Arnold A. Molecular genetic insights into sporadic primary hyperparathyroidism. Endocr Relat Cancer. 2019;26(2):R53–72.

    Article  CAS  PubMed  Google Scholar 

  • Burgess JR, Harle RA, Tucker P, et al. Adrenal lesions in a large kindred with multiple endocrine neoplasia type 1. Arch Surg. 1996;131(7):699–702.

    Article  CAS  PubMed  Google Scholar 

  • Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32(4):676–80.

    Article  CAS  PubMed  Google Scholar 

  • Cetani F, Pardi E, Borsari S, et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab. 2004;89(11):5583–91.

    Article  CAS  PubMed  Google Scholar 

  • Cetani F, Marcocci C, Torregrossa L, et al. Atypical parathyroid adenomas: challenging lesions in the differential diagnosis of endocrine tumors. Endocr Relat Cancer. 2019;26(7):R441–64.

    Article  CAS  PubMed  Google Scholar 

  • Chow LS, Erickson LA, Abu-Lebdeh HS, Wermers RA. Parathyroid lipoadenomas: a rare cause of primary hyperparathyroidism. Endocr Pract. 2006;12(2):131–6.

    Article  PubMed  Google Scholar 

  • Cinque L, Pugliese F, Clemente C, et al. Rare somatic MEN1 gene pathogenic variant in a patient affected by atypical parathyroid adenoma. Int J Endocrinol. 2020;2020:2080797.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke CN, Katsonis P, Hsu TK, et al. Comprehensive genomic characterization of parathyroid cancer identifies novel candidate driver mutations and core pathways. J Endocr Soc. 2019;3(3):544–59.

    Article  CAS  PubMed  Google Scholar 

  • Cromer MK, Starker LF, Choi M, et al. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J Clin Endocrinol Metab. 2012;97(9):E1774–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryns VL, Thor A, Xu HJ, et al. Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N Engl J Med. 1994a;330(11):757–61.

    Article  CAS  PubMed  Google Scholar 

  • Cryns VL, Rubio MP, Thor AD, et al. p53 abnormalities in human parathyroid carcinoma. J Clin Endocrinol Metab. 1994b;78(6):1320–4.

    CAS  PubMed  Google Scholar 

  • Erickson LA, Mete O. Immunohistochemistry in diagnostic parathyroid pathology. Endocr Pathol. 2018;29(2):113–29.

    Article  CAS  PubMed  Google Scholar 

  • Erickson LA, Jin L, Wollan P, et al. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol. 1999;23(3):288–95.

    Article  CAS  PubMed  Google Scholar 

  • Erickson LA, Jin L, Papotti M, et al. Oxyphil parathyroid carcinomas: a clinicopathologic and immunohistochemical study of 10 cases. Am J Surg Pathol. 2002;26(3):344–9.

    Article  PubMed  Google Scholar 

  • Fernandez-Ranvier GG, Khanafshar E, Tacha D, et al. Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer. 2009;115(2):334–44.

    Article  PubMed  Google Scholar 

  • Fraker DL, Travis WD, Merendino JJ, et al. Locally recurrent parathyroid neoplasms as a cause for recurrent and persistent primary hyperparathyroidism. Ann Surg. 1991;213(1):58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill AJ, Clarkson A, Gimm O, et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol. 2006;30(9):1140–9.

    Article  PubMed  Google Scholar 

  • Gill AJ, Lim G, Cheung VKY, et al. Parafibromin-deficient (HPT-JT Type, CDC73 Mutated) parathyroid tumors demonstrate distinctive morphologic features. Am J Surg Pathol. 2019;43(1):35–46.

    Article  PubMed  Google Scholar 

  • Haglund F, Juhlin CC, Brown T, et al. TERT promoter mutations are rare in parathyroid tumors. Endocr Relat Cancer. 2015;22(3):L9–L11.

    Article  CAS  PubMed  Google Scholar 

  • Haven CJ, van Puijenbroek M, Karperien M, et al. Differential expression of the calcium sensing receptor and combined loss of chromosomes 1q and 11q in parathyroid carcinoma. J Pathol. 2004;202(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  • Haven CJ, van Puijenbroek M, Tan MH, et al. Identification of MEN1 and HRPT2 somatic mutations in paraffin-embedded (sporadic) parathyroid carcinomas. Clin Endocrinol (Oxf). 2007;67(3):370–6.

    Article  CAS  PubMed  Google Scholar 

  • Hosny Mohammed K, Siddiqui MT, Willis BC, et al. Parafibromin, APC, and MIB-1 are useful markers for distinguishing parathyroid carcinomas from adenomas. Appl Immunohistochem Mol Morphol. 2017;25(10):731–5.

    Article  CAS  PubMed  Google Scholar 

  • Howell VM, Haven CJ, Kahnoski K, et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet. 2003;40(9):657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang X, Wang O, et al. The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int J Cancer. 2020;147(9):2446–57.

    Article  CAS  PubMed  Google Scholar 

  • Juhlin CC, Erickson LA. Genomics and epigenomics in parathyroid neoplasia: from bench to surgical pathology practice. Endocr Pathol. 2021;32(1):17–34.

    Article  PubMed  Google Scholar 

  • Juhlin CC, Kiss NB, Villablanca A, et al. Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS One. 2010a;5(3):e9472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juhlin CC, Nilsson IL, Johansson K, et al. Parafibromin and APC as screening markers for malignant potential in atypical parathyroid adenomas. Endocr Pathol. 2010b;21(3):166–77.

    Article  CAS  PubMed  Google Scholar 

  • Juhlin CC, Nilsson IL, Lagerstedt-Robinson K, et al. Parafibromin immunostainings of parathyroid tumors in clinical routine: a near-decade experience from a tertiary center. Mod Pathol. 2019;32(8):1082–94.

    Article  CAS  PubMed  Google Scholar 

  • Juhlin CC, Falhammar H, Zedenius J, et al. Lipoadenoma of the parathyroid gland: characterization of an institutional series spanning 28 years. Endocr Pathol. 2020;31(2):156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruijff S, Sidhu SB, Sywak MS, et al. Negative parafibromin staining predicts malignant behavior in atypical parathyroid adenomas. Ann Surg Oncol. 2014;21(2):426–33.

    Article  PubMed  Google Scholar 

  • Kutahyalioglu M, Nguyen HT, Kwatampora L, et al. Genetic profiling as a clinical tool in advanced parathyroid carcinoma. J Cancer Res Clin Oncol. 2019;145(8):1977–86.

    Article  PubMed  Google Scholar 

  • Lin L, Zhang JH, Panicker LM, et al. The parafibromin tumor suppressor protein inhibits cell proliferation by repression of the c-myc proto-oncogene. Proc Natl Acad Sci U S A. 2008;105(45):17420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd RV, Carney JA, Ferreiro JA, et al. Immunohistochemical analysis of the cell cycle-associated antigens Ki-67 and retinoblastoma protein in parathyroid carcinomas and adenomas. Endocr Pathol. 1995;6(4):279–87.

    Article  PubMed  Google Scholar 

  • Mao X, Wu Y, Yu S, et al. Genetic alteration profiles and clinicopathological associations in atypical parathyroid adenoma. Int J Genomics. 2021;2021:6666257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandya C, Uzilov AV, Bellizzi J, et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight. 2017;2(6):e92061.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider R, Bartsch-Herzog S, Ramaswamy A, et al. Immunohistochemical expression of e-cadherin in atypical parathyroid adenoma. World J Surg. 2015;39(10):2477–83.

    Article  PubMed  Google Scholar 

  • Seabrook AJ, Harris JE, Velosa SB, et al. Multiple endocrine tumors associated with germline MAX mutations: multiple endocrine neoplasia type 5? J Clin Endocrinol Metab. 2021;106(4):1163–82.

    Article  PubMed  Google Scholar 

  • Shattuck TM, Välimäki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med. 2003;349(18):1722–9.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Figueroa AM, Bassett R, Christakis I, et al. Using a novel diagnostic nomogram to differentiate malignant from benign parathyroid neoplasms. Endocr Pathol. 2019;30(4):285–96.

    Article  CAS  PubMed  Google Scholar 

  • Simonds WF, Robbins CM, Agarwal SK, et al. Familial isolated hyperparathyroidism is rarely caused by germline mutation in HRPT2, the gene for the hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab. 2004;89(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  • Soong CP, Arnold A. Recurrent ZFX mutations in human sporadic parathyroid adenomas. Oncoscience. 2014;1(5):360–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulaiman L, Haglund F, Hashemi J, et al. Genome-wide and locus specific alterations in CDC73/HRPT2-mutated parathyroid tumors. PLoS One. 2012;7(9):e46325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulaiman L, Juhlin CC, Nilsson IL, et al. Global and gene-specific promoter methylation analysis in primary hyperparathyroidism. Epigenetics. 2013;8(6):646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talat N, Schulte KM. Clinical presentation, staging and long-term evolution of parathyroid cancer. Ann Surg Oncol. 2010;17(8):2156–74.

    Article  PubMed  Google Scholar 

  • Thakker RV. Genetics of parathyroid tumours. J Intern Med. 2016;280(6):574–83.

    Article  CAS  PubMed  Google Scholar 

  • Thakker RV, Bouloux P, Wooding C, et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med. 1989;321:218–24.

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Sun B, Wang ZP, et al. Whole-exome sequencing identifies novel recurrent somatic mutations in sporadic parathyroid adenomas. Endocrinology. 2018;159(8):3061–8.

    Article  CAS  PubMed  Google Scholar 

  • Williams MD, DeLellis RA, Erickson LA, et al. Pathology data set for reporting parathyroid carcinoma & atypical parathyroid neoplasm: recommendations from the international collaboration on cancer reporting (ICCR). Hum Pathol. 2020;110:73–82.

    Article  PubMed  Google Scholar 

  • Wynne AG, van Heerden J, Carney JA, et al. Parathyroid carcinoma: clinical and Pathologic Features in 43 patients. Medicine (Baltimore). 1992;71(4):197–205.

    Article  CAS  PubMed  Google Scholar 

  • Zhu R, Wang Z, Hu Y. Prognostic role of parafibromin staining and CDC73 mutation in patients with parathyroid carcinoma: a systematic review and meta-analysis based on individual patient data. Clin Endocrinol (Oxf). 2020;92(4):295–302.

    Article  CAS  PubMed  Google Scholar 

Adrenal Cortical Tumors

  • Assié G, Libé R, Espiard S, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome. N Engl J Med. 2013;369(22):2105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Assié G, Letouzé E, Fassnacht M, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet. 2014;46(6):607–12.

    Article  PubMed  Google Scholar 

  • Assié G, Jouinot A, Fassnacht M, et al. Value of molecular classification for prognostic assessment of adrenocortical carcinoma. JAMA Oncol. 2019;5(10):1440–7.

    Article  PubMed  Google Scholar 

  • Aubert S, Wacrenier A, Leroy X, et al. Weiss system revisited: a clinicopathologic and immunohistochemical study of 49 adrenocortical tumors. Am J Surg Pathol. 2002;26(12):1612–9.

    Article  PubMed  Google Scholar 

  • Beuschlein F, Fassnacht M, Assié G, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med. 2014;370(11):1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisceglia M, Ludovico O, Di Mattia A, et al. Adrenocortical oncocytic tumors: report of 10 cases and review of the literature. Int J Surg Pathol. 2004;12(3):231–43.

    Article  PubMed  Google Scholar 

  • Bourdeau I, Parisien-La Salle S, Lacroix A. Adrenocortical hyperplasia: a multifaceted disease. Best Pract Res Clin Endocrinol Metab. 2020;34(3):101386.

    Article  PubMed  Google Scholar 

  • Brondani VB, Lacombe AMF, Mariani BMP, et al. Low protein expression of both ATRX and ZNRF3 as novel negative prognostic markers of adult adrenocortical carcinoma. Int J Mol Sci. 2021;22(3):1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carney JA, Gordon H, Carpenter PC, et al. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore). 1985;64(4):270–83.

    Article  CAS  PubMed  Google Scholar 

  • de Krijger RR, Papathomas TG. Adrenocortical neoplasia: evolving concepts in tumorigenesis with an emphasis on adrenal cortical carcinoma variants. Virchows Arch. 2012;460(1):9–18.

    Article  PubMed  Google Scholar 

  • de Reyniès A, Assié G, Rickman DS, et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol. 2009;27(7):1108–15.

    Article  PubMed  Google Scholar 

  • Di Dalmazi G, Kisker C, Calebiro D, et al. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing’s syndrome: a European multicentric study. J Clin Endocrinol Metab. 2014;99(10):E2093–100.

    Article  PubMed  Google Scholar 

  • Domènech M, Grau E, Solanes A, et al. Characteristics of adrenocortical carcinoma associated with lynch syndrome. J Clin Endocrinol Metab. 2021;106(2):318–25.

    Article  PubMed  Google Scholar 

  • Duregon E, Fassina A, Volante M, et al. The reticulin algorithm for adrenocortical tumor diagnosis: a multicentric validation study on 245 unpublished cases. Am J Surg Pathol. 2013;37(9):1433–40.

    Article  PubMed  Google Scholar 

  • Duregon E, Cappellesso R, Maffeis V, et al. Validation of the prognostic role of the "Helsinki Score" in 225 cases of adrenocortical carcinoma. Hum Pathol. 2017;62:1–7.

    Article  PubMed  Google Scholar 

  • Else T, Lerario AM, Everett J, et al. Adrenocortical carcinoma and succinate dehydrogenase gene mutations: an observational case series. Eur J Endocrinol. 2017;177(5):439–44.

    Article  CAS  PubMed  Google Scholar 

  • Espiard S, Drougat L, Libé R, et al. ARMC5 Mutations in a Large Cohort of Primary Macronodular Adrenal Hyperplasia: Clinical and Functional Consequences. J Clin Endocrinol Metab. 2015;100(6):E926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espiard S, Knape MJ, Bathon K, et al. Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight. 2018;3(8):e98296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faillot S, Foulonneau T, Néou M, et al. Genomic classification of benign adrenocortical lesions. Endocr Relat Cancer. 2021;28(1):79–95.

    Article  CAS  PubMed  Google Scholar 

  • Gatta-Cherifi B, Chabre O, Murat A, et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d'etude des Tumeurs Endocrines database. Eur J Endocrinol. 2012;166(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  • Gaujoux S, Pinson S, Gimenez-Roqueplo AP, et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin Cancer Res. 2010;16(21):5133–41.

    Article  CAS  PubMed  Google Scholar 

  • Giordano TJ, Berney D, de Krijger RR, et al. Data set for reporting of carcinoma of the adrenal cortex: explanations and recommendations of the guidelines from the International Collaboration on Cancer Reporting. Hum Pathol. 2021;110:50–61.

    Article  PubMed  Google Scholar 

  • Goh G, Scholl UI, Healy JM, et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet. 2014;46(6):613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Chen H, Fu H, et al. Hereditary leiomyomatosis and renal cell carcinoma syndrome combined with adrenocortical carcinoma on 18F-FDG PET/CT. Clin Nucl Med. 2017;42(9):692–4.

    Article  PubMed  Google Scholar 

  • Henry I, Jeanpierre M, Couillin P, et al. Molecular definition of the 11p15.5 region involved in Beckwith–Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum Genet. 1989;81(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao HP, Kirschner LS, Bourdeau I, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 2009;94(8):2930–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouinot A, Assie G, Libe R, et al. DNA methylation is an independent prognostic marker of survival in adrenocortical cancer. J Clin Endocrinol Metab. 2017;102(3):923–32.

    PubMed  Google Scholar 

  • Juhlin CC, Goh G, Healy JM, et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J Clin Endocrinol Metab. 2015;100(3):E493–502.

    Article  CAS  PubMed  Google Scholar 

  • Juhlin CC, Bertherat J, Giordano TJ, et al. What did we learn from the molecular biology of adrenal cortical neoplasia? from histopathology to translational genomics. Endocr Pathol. 2021;32(1):102–33.

    Article  CAS  PubMed  Google Scholar 

  • Kamilaris CDC, Stratakis CA, Hannah-Shmouni F. Molecular genetic and genomic alterations in Cushing’s syndrome and primary aldosteronism. Front Endocrinol (Lausanne). 2021;12:632543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenzini L, Rossitto G, Maiolino G, et al. A meta-analysis of somatic KCNJ5 K(+) channel mutations in 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metab. 2015;100(8):E1089–95.

    Article  PubMed  Google Scholar 

  • Liu T, Brown TC, Juhlin CC, et al. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocr Relat Cancer. 2014;21(3):427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Louiset E, Duparc C, Young J, et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med. 2013;369(22):2115–25.

    Article  CAS  PubMed  Google Scholar 

  • Lowe KM, Young WF, Lyssikatos C, et al. Cushing syndrome in carney complex: clinical, pathologic, and molecular genetic features in the 17 affected mayo clinic patients. Am J Surg Pathol. 2017;41(2):171–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maillet M, Bourdeau I, Lacroix A. Update on primary micronodular bilateral adrenocortical diseases. Curr Opin Endocrinol Diabetes Obes. 2020;27(3):132–9.

    Article  PubMed  Google Scholar 

  • Martins-Filho SN, Almeida MQ, Soares I, et al. Clinical impact of pathological features including the Ki-67 labeling index on diagnosis and prognosis of adult and pediatric adrenocortical tumors. Endocr Pathol. 2021;32(2):288–300.

    Article  CAS  PubMed  Google Scholar 

  • Matyakhina L, Freedman RJ, Bourdeau I, et al. Hereditary leiomyomatosis associated with bilateral, massive, macronodular adrenocortical disease and atypical cushing syndrome: a clinical and molecular genetic investigation. J Clin Endocrinol Metab. 2005;90(6):3773–9.

    Article  CAS  PubMed  Google Scholar 

  • Menon RK, Ferrau F, Kurzawinski TR, et al. Adrenal cancer in neurofibromatosis type 1: case report and DNA analysis. Endocrinol Diabetes Metab Case Rep. 2014;2014:140074.

    PubMed  PubMed Central  Google Scholar 

  • Mete O, Asa SL, Giordano TJ, et al. Immunohistochemical biomarkers of adrenal cortical neoplasms. Endocr Pathol. 2018;29(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Maekawa T, Felizola SJ, et al. Adrenal CYP11B1/2 expression in primary aldosteronism: immunohistochemical analysis using novel monoclonal antibodies. Mol Cell Endocrinol. 2014;392(1-2):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanba K, Blinder AR, Rege J, et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension. 2020;75(3):645–9.

    Article  CAS  PubMed  Google Scholar 

  • Papathomas TG, Pucci E, Giordano TJ, et al. An international Ki67 reproducibility study in adrenal cortical carcinoma. Am J Surg Pathol. 2016;40(4):569–76.

    Article  PubMed  Google Scholar 

  • Papotti M, Volante M, Duregon E, et al. Adrenocortical tumors with myxoid features: a distinct morphologic and phenotypical variant exhibiting malignant behavior. Am J Surg Pathol. 2010;34(7):973–83.

    Article  PubMed  Google Scholar 

  • Picard C, Orbach D, Carton M, et al. Revisiting the role of the pathological grading in pediatric adrenal cortical tumors: results from a national cohort study with pathological review. Mod Pathol. 2019;32(4):546–59.

    Article  PubMed  Google Scholar 

  • Pilati C, Shinde J, Alexandrov LB, et al. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J Pathol. 2017;242(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  • Rassi-Cruz M, Maria AG, Faucz FR, et al. Phosphodiesterase 2A and 3B variants are associated with primary aldosteronism. Endocr Relat Cancer. 2021;28(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond VM, Everett JN, Furtado LV, et al. Adrenocortical carcinoma is a lynch syndrome-associated cancer. J Clin Oncol. 2013;31(24):3012–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rege J, Nanba K, Blinder AR, et al. Identification of somatic mutations in CLCN2 in aldosterone-producing adenomas. J Endocr Soc. 2020;4(10):bvaa123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife. 2015;4:e06315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratakis CA, Boikos SA. Genetics of adrenal tumors associated with Cushing's syndrome: a new classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol Metab. 2007;3(11):748–57.

    Article  CAS  PubMed  Google Scholar 

  • Svahn F, Paulsson JO, Stenman A, et al. TERT promoter hypermethylation is associated with poor prognosis in adrenocortical carcinoma. Int J Mol Med. 2018;42(3):1675–83.

    CAS  PubMed  Google Scholar 

  • Thiel A, Reis AC, Haase M, et al. PRKACA mutations in cortisol-producing adenomas and adrenal hyperplasia: a single-center study of 60 cases. Eur J Endocrinol. 2015;172(6):677–85.

    Article  CAS  PubMed  Google Scholar 

  • Tissier F, Cavard C, Groussin L, et al. Mutations of β-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 2005;65(17):7622–7.

    Article  CAS  PubMed  Google Scholar 

  • Torres MB, Diggs LP, Wei JS, et al. Ataxia telangiectasia mutated germline pathogenic variant in adrenocortical carcinoma. Cancer Genet. 2021;256–257:21–5.

    Article  PubMed  Google Scholar 

  • Vaduva P, Bonnet F, Bertherat J. Molecular basis of primary aldosteronism and adrenal cushing syndrome. J Endocr Soc. 2020;4(9):bvaa075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserman JD, Novokmet A, Eichler-Jonsson C, et al. Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: a children's oncology group study. J Clin Oncol. 2015;33(6):602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol. 1984;8(3):163–9.

    Article  CAS  PubMed  Google Scholar 

  • Weiss LM, Medeiros LJ, Vickery AL. Pathologic Features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol. 1989;13(3):202–6.

    Article  CAS  PubMed  Google Scholar 

  • Wieneke JA, Thompson LD, Heffess CS. Adrenal cortical neoplasms in the pediatric population: a clinicopathologic and immunophenotypic analysis of 83 patients. Am J Surg Pathol. 2003;27(7):867–81.

    Article  PubMed  Google Scholar 

  • Williams TA, Gomez-Sanchez CE, Rainey WE, et al. International histopathology consensus for unilateral primary aldosteronism. J Clin Endocrinol Metab. 2021;106(1):42–54.

    Article  PubMed  Google Scholar 

  • Wright JP, Montgomery KW, Tierney J, et al. Ectopic, retroperitoneal adrenocortical carcinoma in the setting of Lynch syndrome. Fam Cancer. 2018;17(3):381–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu VC, Wang SM, Chueh SJ, et al. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci Rep. 2017;7:39121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Cherniack AD, Dewal N, et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell. 2016;29(5):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilbermint M, Xekouki P, Faucz FR, et al. Primary aldosteronism and ARMC5 Variants. J Clin Endocrinol Metab. 2015;100(6):E900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Adrenal Medullary Tumors and Paragangliomas

  • Baysal BE. Hereditary paraganglioma targets diverse paraganglia. J Med Genet. 2002;39:617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baysal BE. Genomic imprinting and environment in hereditary paraganglioma. Am J Med Genet C Semin Med Genet. 2004;129C:85–90.

    Article  PubMed  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo-Castiñeira C, Valdés N, Sierra MI, et al. SDHC promoter methylation, a novel pathogenic mechanism in parasympathetic paragangliomas. J Clin Endocrinol Metab. 2018;103(1):295–305.

    Article  PubMed  Google Scholar 

  • Cascon A, Landa I, Lopez-Jimenez E, et al. Molecular characterization of a common SDHB deletion in paraganglioma patients. J Med Genet. 2008;45:233–8.

    Article  CAS  PubMed  Google Scholar 

  • Casey R, Neumann HPH, Maher ER. Genetic stratification of inherited and sporadic phaeochromocytoma and paraganglioma: implications for precision medicine. Hum Mol Genet. 2020;29(R2):R128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crona J, Lamarca A, Ghosal S, et al. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr Relat Cancer. 2019;26(5):539–50.

    Article  CAS  PubMed  Google Scholar 

  • Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  • Favier J, Meatchi T, Robidel E, et al. Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol. 2020;33(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  • Fishbein L, Leshchiner I, Walter V, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimencz-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63:5615–21.

    Google Scholar 

  • Hao HX, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;28(325):1139–42.

    Article  Google Scholar 

  • Havekes B, Corssmit EP, Jansen JC, et al. Malignant paragangliomas associated with mutations in the succinate dehydrogenase D gene. J Clin Endocrinol Metab. 2007;92:1245–8.

    Article  CAS  PubMed  Google Scholar 

  • Job S, Draskovic I, Burnichon N, et al. Telomerase activation and ATRX mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. 2019;25(2):760–70.

    Article  CAS  PubMed  Google Scholar 

  • King EE, Dahia PLM. Molecular biology of pheochromocytoma and paragangliomas. In: Lloyd RV, editor. Endocrine pathology: differential diagnosis and molecular advances. 2nd ed. New York, NY: Springer; 2010. p. 297–305.

    Chapter  Google Scholar 

  • Korpershoek E, Petri BJ, Post E, et al. Adrenal medullary hyperplasia is a precursor lesion for pheochromocytoma in MEN2 syndrome. Neoplasia. 2014;16(10):868–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korpershoek E, Koffy D, Eussen BH, et al. Complex MAX rearrangement in a family with malignant pheochromocytoma, renal oncocytoma, and erythrocytosis. J Clin Endocrinol Metab. 2016;101(2):453–60.

    Article  CAS  PubMed  Google Scholar 

  • Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    Article  CAS  PubMed  Google Scholar 

  • Melicow MM. One hundred cases of pheochromocytoma (107 tumors) at the Columbia–Presbyterian Medical Center, 1926–1976: a clinicopathological analysis. Cancer. 1977;40:1987–2004.

    Article  CAS  PubMed  Google Scholar 

  • Mete O, Asa SL, Giordano TJ, et al. Immunohistochemical biomarkers of adrenal cortical neoplasms. Endocr Pathol. 2018 Jun;29(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  • Papathomas TG, Suurd DPD, Pacak K, et al. What have we learned from molecular biology of paragangliomas and pheochromocytomas? Endocr Pathol. 2021;32(1):134–53.

    Article  PubMed  Google Scholar 

  • Raue F, Frank-Raue K. Multiple endocrine neoplasia type 2: 2007 update. Horm Res. 2007;68:101–4.

    PubMed  Google Scholar 

  • Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth R, Ahmed M, Hoschar AP, et al. Cervical sympathetic chain paraganglioma: a report of 2 cases and a literature review. Ear Nose Throat J. 2014;93(3):E22–7.

    PubMed  Google Scholar 

  • Skala SL, Dhanasekaran SM, Mehra R. Hereditary leiomyomatosis and renal cell carcinoma syndrome (HLRCC): a contemporary review and practical discussion of the differential diagnosis for HLRCC-associated renal cell carcinoma. Arch Pathol Lab Med. 2018;142(10):1202–15.

    Article  CAS  PubMed  Google Scholar 

  • Thompson LDR, Gill AJ, Asa SL, et al. Data set for the reporting of pheochromocytoma and paraganglioma: explanations and recommendations of the guidelines from the International Collaboration on Cancer Reporting. Hum Pathol. 2020;110:83–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turchini J, Cheung VKY, Tischler AS, et al. Pathology and genetics of phaeochromocytoma and paraganglioma. Histopathology. 2018 Jan;72(1):97–105.

    Article  PubMed  Google Scholar 

  • van Nederveen FH, Gaal J, Favier J, et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol. 2009;10(8):764–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams MD. Paragangliomas of the head and neck: an overview from diagnosis to genetics. Head Neck Pathol. 2017;11(3):278–87.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori A. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erickson, L.A. (2023). Molecular Pathology of Endocrine Tumors. In: Cheng, L., Netto, G.J., Eble, J.N. (eds) Molecular Surgical Pathology. Springer, Cham. https://doi.org/10.1007/978-3-031-35118-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35118-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35117-4

  • Online ISBN: 978-3-031-35118-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics