Skip to main content

Molecular Pathology of Salivary Gland Tumors

  • Chapter
  • First Online:
Molecular Surgical Pathology

Abstract

The WHO classification of primary salivary gland neoplasms includes nearly 40 different entities. The morphologic and immunophenotypic characteristics of benign and malignant salivary gland neoplasms often show significant overlap. Specific recurrent genetic alterations, particularly genetic translocations, have been identified in several salivary gland tumors and can assist in appropriate classification of morphologically challenging neoplasms. In addition to next-generation sequencing technologies, immunohistochemical probes and in situ hybridization techniques specifically identifying the genetic change or their subsequent product have also been developed. This chapter includes salivary gland neoplasms with genetic changes that can be detected for clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Suggested Reading

Introduction

  • Freiberger SN, Brada M, Fritz C, Höller S, Vogetseder A, Horcic M, et al. SalvGlandDx - a comprehensive salivary gland neoplasm specific next generation sequencing panel to facilitate diagnosis and identify therapeutic targets. Neoplasia. 2021;23(5):473–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami RS, Luthra R, Singh RR, Patel KP, Routbort MJ, Aldape KD, et al. Identification of factors affecting the success of Next Generation Sequencing testing in solid tumours. Am J Clin Pathol. 2016;145:222–37.

    Article  PubMed  Google Scholar 

  • Luk PP, Selinger CI, Cooper WA, Mahar A, Palme CE, O'Toole SA, et al. Clinical utility of in situ hybridization assays in head and neck neoplasms. Head Neck Pathol. 2019;13(3):397–414.

    Article  PubMed  Google Scholar 

  • Pantanowitz L, Thompson LDR, Rossi ED. Diagnostic approach to fine needle aspirations of cystic lesions of the salivary gland. Head Neck Pathol. 2018;12(4):548–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skálová A, Stenman G, Simpson RHW, Hellquist H, Slouka D, Svoboda T, et al. The role of molecular testing in the differential diagnosis of salivary gland carcinomas. Am J Surg Pathol. 2018;42(2):e11–27.

    Article  PubMed  Google Scholar 

Acinic Cell Carcinoma

  • Andreasen A, Varma A, Barasch N, Thompson LDR, Miettinen M, Rooper L, et al. The HTN3-MSANTD3 fusion gene defined a subset of acinic cell carcinoma of the salivary gland. Am J Surg Pathol. 2019;43:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barasch N, Gong X, Kwei KA, Varma S, Biscocho J, Qu K, et al. Recurrent rearrangements of the Myb/SNAT-like DNA binding domain containing 3 gene (MSANTD3) in salivary gland acinic cell carcinoma. PLoS One. 2017;12(2):e0171265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenevert J, Duvuuri U, Chiosea S, Dacic S, Cieply K, Kim J, et al. DOG1: a novel marker of salivary acinar and intercalated duct differentiation. Mod Pathol. 2012;25:919–29.

    Article  CAS  PubMed  Google Scholar 

  • Chiosea SI, Griffith C, Asaad A, Seethala RR. The profile of acinic cell carcinoma after recognition of mammary analogue secretory carcinoma. Am J Surg Pathol. 2012;36:343–50.

    Article  PubMed  Google Scholar 

  • Ellis GL, Corio RL. Acinic cell adenocarcinoma, a clinicopathologic analysis of 294 cases. Cancer. 1983;52:542–9.

    Article  CAS  PubMed  Google Scholar 

  • Haller F, Bieg M, Will R, Korner C, Weichenhan D, Bott A, et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinoms of the salivary gland. Nat Commun. 2019a;10:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller F, Skálová A, Ihrler S, Markl B, Bieg M, Moskalev EA, et al. Nuclear NR4A3 immunostaining is a specific and sensitive novel marker for acinic cell carcinoma of the salivary glands. Am J Surg Pathol. 2019b;43:1264–72.

    Article  PubMed  Google Scholar 

  • Haller F, Moskalev EA, Kuck S, Bieg M, Winkelmann C, Müller SK. etal. Nuclear NR4A2 (Nurr1) immunostaining is a novel marker for acinic cell carcinoma of the salivary glands lacking the classic NR4A3 (NOR-1) upregulation. Am J Surg Pathol. 2020;44(9):1290–2.

    Article  PubMed  Google Scholar 

  • Owosho A, Tyler D, Adesina O, Odujoko O, Summersgill K. NR4A3 (NOR-1) immunostaining shows better performance than DOG1 immunostaining in acinic cell carcinoma of salivary gland: a preliminary study. J Oral Maxillofac Res. 2021;12(1):e4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skaugen JM, Seethala RR, Chiosea SI, Landau MS. Evaluation of NR4A3 immunohistochemistry and fluorescence in situ hybridization and comparison with DOG1 IHC for FNA diagnosis of acinic cell carcinoma. Cancer Cytopathol. 2021;129:104–13.

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan K, Beg S, He B, Zhang T, Cantley R, Lubin DJ, et al. NR4A3 immunostain is a highly sensitive and specific marker for acinic cell carcinoma in cytologic and surgical specimens. Am J Clin Pathol. 2021; https://doi.org/10.1093/ajcp/aqab099.

  • Wong KS, Marino-Enriques A, Hornick JL, Jo VY. NR4A3 immunohistochemistry reliably discriminates acinic cell carcinoma from mimics. Head and Neck Pathol. 2021;15:425–32.

    Article  Google Scholar 

Adenoid Cystic Carcinoma

  • Andersson MK, Mangiapane G, Nevado PT, Tsakaneli A, Carlsson T, Corda G, et al. ATR is a MYB regulated gene and potential therapeutic target in adenoid cystic carcinoma. Oncogenesis. 2020;9:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill LB, Kanner WA, Fehr A, Andren Y, Moskaluk CA, Loning T, et al. Analysis of MYB expression and MYB-NFIB gene fusion in adenoid cystic carcinoma and other salivary gland neoplasms. Mod Pathol. 2011;24:1169–76.

    Article  CAS  PubMed  Google Scholar 

  • Frerich CA, Sedam HN, Kang H, Mitani Y, El-Naggar AK, Ness SA. N-Terminal truncated MYB with new transcriptional activity produced through use of an alternative MYB promoter in salivary gland adenoid cystic carcinoma. Cancers (Basel). 2019;12(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45(7):791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikse OR, Tchaicha JH, Akbay EA, Chen L, Bronson RT, Hammerman PS, et al. The impact of the MYB-NFIB fusion proto-oncogene in vivo. Oncotarget. 2016;7(22):31681–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitani Y, Liu B, Rao PH, Borra VJ, Zafereo M, Weber RS, et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res. 2016;22(3):725–33.

    Article  CAS  PubMed  Google Scholar 

  • Nordkvist A, Mark J, Gustafsson H, Bang G, Stenman G. Non-random chromosome rearrangements in adenoid cystic carcinoma of the salivary glands. Genes Chromosomes Cancer. 1994;10:115–21.

    Article  CAS  PubMed  Google Scholar 

  • Persson M, Andrein Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106(44):18740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson M, Andren Y, Moskaluk CA, Frierson HF Jr, Cooke SL, Futreal PA, et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Gene Chromosomes Cancer. 2012;51(8):805–17.

    Article  CAS  Google Scholar 

  • Rettig EM, Talbot CC Jr, Sausen M, Jones S, Bishop JA, Wood LD, et al. Whole-genome sequencing of salivary gland adenoid cystic carcinoma. Cancer Prev Res (Phila). 2016;9(4):265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooper LM, Lombardo KA, Oliai BR, Ha PK, Bishop JA. MYB RNA in situ hybridization facilitates sensitive and specific diagnosis of adenoid cystic carcinoma regardless of translocation status. Am J Surg Pathol. 2021;45(4):488–97.

    Article  PubMed  Google Scholar 

  • Stenman G, Andersson MK, Andren Y. New tricks from an old oncogene. Cell Cycle. 2010;9(15):2986–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenman G, Licitra L, Said-Al-Naief N, van Zante A, Yarbrough WG. Chapter 7: Adenoid cystic carcinoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization Classification of head and neck tumours. 4th ed. Lyon: IARC; 2017. p. 164–5.

    Google Scholar 

  • Stephens PJ, Davies HR, Mitani Y, Van Loo P, Shlien A, Tarpey PS, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. 2013;123:2965–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Togashi Y, Dobashi A, Sakata S, Sato Y, Baba S, Seto A, et al. MYB and MYBL1 in adenoid cystic carcinoma: diversity in the mode of genomic rearrangement and transcripts. Mod Pathol. 2018;31(6):934–46.

    Article  CAS  PubMed  Google Scholar 

  • West RB, Kong C, Clarke N, Gilks T, Lipsick J, Cao H, et al. MYB expression and translocation in adenoid cystic carcinomas and other salivary gland tumours with clinicopathologic correlation. Am J Surg Pathol. 2011;35(1):92–9.

    Article  PubMed  PubMed Central  Google Scholar 

Epithelial Myoepithelial

  • De Cecio R, Cantile M, Fulciniti F, Botti G, Foschini MP, Losito NS. Salivary epithelial-myoepithelial carcinoma: clinical, morphological and molecular features. Pathologica. 2017;109:1–8.

    PubMed  Google Scholar 

  • Felisiak-Golabek A, Inaguma S, Kowalik A, Wasag B, Wang ZF, Zieba S, et al. SP174 antibody lacks specificity for NRAS Q61R and cross-reacts with HRAS and KRAS Q61R mutant proteins in malignant melanoma. Appl Immunohistochem Mol Morphol. 2018;26(1):40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallani SE, Udager AM, Bell D, Fonseca I, Thompson LDR, Assaad A, et al. Epithelial-Myoepithelial carcinoma: frequent morphologic and molecular evidence of pre-existing pleomorphic adenoma, common HRAS mutations in PLAG1-intact and HMGA2-intact cases, and occasional TP53, FBXW7, and SMARCB1 alterations in high grade cases. Am J Surg Pathol. 2018;42(1):18–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakaguro M, Tanigawa M, Hirai H, Yamamoto Y, Urano M, Takahashi RH, et al. The diagnostic utility of RAS Q61R mutation-specific immunohistochemistry in epithelial-myoepithelial carcinoma. Am J Surg Pathol. 2021;45:885–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Urano M, Nakaguro M, Yamamoto Y, Hirai H, Tanigawa M, Saigusa N, et al. Diagnostic significance of HRAS mutations in epithelial-myoepithelial carcinomas exhibiting a broad histopathologic spectrum. Am J Surg Pathol. 2019;43(7):984–94.

    Article  PubMed  Google Scholar 

Hyalinizing Clear Cell Carcinoma

  • Antonescu CR, Nafa K, Segal NH, Dal Cin P, Ladanyi M. EWS-CREB1: A recurrent variant fusion in clear cell sarcoma – Association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12:5356–62.

    Article  CAS  PubMed  Google Scholar 

  • Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD, Ladanyi M. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46:1051–60.

    Article  CAS  PubMed  Google Scholar 

  • Antonescu CR, Katabi N, Zhang L, Sung YS, Seethala RR, Jordan RC, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear cell carcinoma of salivary gland. Genes Chromosomes Cancer. 2011;50(7):559–70.

    Article  CAS  PubMed  Google Scholar 

  • Chapman A, Skalova A, Ptakova N, Martinek P, Goytain A, Tucker T, et al. Molecular profiling of hyalinizing clear cell carcinoma revealed a subset of tumors harboring a novel EWSR1-CREM fusion. Report of 3 cases. Am J Surg Pathol. 2018;42:1182–9.

    Article  PubMed  Google Scholar 

  • Heft Neal ME, Gensterblum-Miller E, Bhangale AD, Kulkarni A, Zhai J, Smith J, et al. Integrative sequencing discovers an ATF1-motif enriched molecular signature that differentiates hyalinising clear cell carcinoma from mucoepidermoid carcinoma. Oral Oncol. 2021;117:105270.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Prera JC, Kwan R, Tripodi J, Chiosea S, Cordon-Cardo C, Najfeld V, et al. Reappraising hyalinising clear cell carcinoma: a population based study with molecular confirmation. Head Neck. 2017;39(3):503–11.

    Article  PubMed  Google Scholar 

  • Milchgrub A, Gnepp DR, Vuitch F, Delgado R. Albores-Saavedra. Hyalinizing clear cell carcinoma of salivary gland. Am J Surg Pathol. 1993;18(1):74–82.

    Article  Google Scholar 

  • Shah AA, LeGallo RD, van Zante A, Firerson HF, Mills SE, Berean KW, et al. EWSR1 genetic rearrangement in salivary gland tumors. A specific and very common features of hyalinizing clear cell carcinoma. Am J Surg Pathol. 2013;37:571–8.

    Article  PubMed  Google Scholar 

  • Thway K, Fisher C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol. 2012;36:e1–e11.

    Article  PubMed  Google Scholar 

Intraductal Carcinoma

  • Bishop JA, Gagan J, Krane JF, Jo VY. Low grade apocrine intraductal carcinoma: expanding the morphologic and molecular spectrum of an enigmatic salivary gland tumor. Head and Neck Pathol. 2020;14:869–75.

    Article  Google Scholar 

  • Bishop JA, Nakaguro M, Whaley RD, Ogura K, Imai H, Laklouk I, et al. Oncocytic intraductal carcinoma of salivary glands: a distinct variant with TRIM33-RET fusions and BRAF V600E mutations. Histopathology. 2021;79(3):338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loening T, Leivo I, Simpson RHW, Weinreb I. Chapter 7: Intraductal carcinoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization Classification of head and neck tumours. 4th ed. Lyon: IARC; 2017. p. 170–1.

    Google Scholar 

  • Lu H, Graham RP, Seethala R, Chute D. Intraductal carcinoma of salivary glands harboring TRIM27-RET fusion with mixed low grade and apocrine types. Head Neck Pathol. 2020;14(1):239–45.

    Article  PubMed  Google Scholar 

  • Palicelli A. Intraductal carcinomas of the salivary glands: systematic review and classification of 93 published cases. APMIS. 2020;128:191–200.

    Article  CAS  PubMed  Google Scholar 

  • Skálová A, Vanecek T, Uro-Coste E, Bishop JA, Weinreb I, Thompson LDR, et al. Molecular profiling of salivary gland intraductal carcinoma revealed a subset of tumors harboring NCOA4-RET and novel TRIM27-RET fusions: a report of 17 cases. Am J Surg Pathol. 2018;42(11):1445–55.

    Article  PubMed  Google Scholar 

  • Skálová A, Ptakova N, Santana T, Agaimy A, Ihrler S, Uro-Coste E, et al. NCOA4-RET and TRIM27-RET are characteristic gene fusions in sliavary intraductal carcinoma, including invasive and metastatic tumors. Is “intraductal” correct? Am J Surg Pathol. 2019;43:1303–13.

    Article  PubMed  Google Scholar 

  • Todorovic E, Weinreb I. Intraductal carcinomas of the salivary gland. Surg Pathol Clin. 2021;14(1):1–15.

    Article  PubMed  Google Scholar 

  • Weinreb I, Bishop JA, Chiosea AI, Seethala RR, Perez-Ordonez B, Zhang L, et al. Recurrent RET gene rearrangements in intraductal carcinomas of salivary gland. Am J Surg Pathol. 2018;42:442–52.

    Article  PubMed  PubMed Central  Google Scholar 

Mucoepidermoid Carcinoma

  • Bieńkowski M, Kunc M, Iliszko M, Kuźniacka A, Studniarek M, Biernat W. MAML2 rearrangement as a useful diagnostic marker discriminating between Warthin tumour and Warthin-like mucoepidermoid carcinoma. Virchows Arch. 2020;477(3):393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop JA, Cowan ML, Shum CH, Westra WH. MAML2 rearrangements in variant forms of mucoepidermoid carcinoma: ancillary diagnostic testing for the ciliated and Warthin-like variants. Am J Surg Pathol. 2018;42(1):130–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA, et al. MECT1-MAML2 fusion oncogene linked to the aberrant activation of Cyclic AMP/CREB regulated genes. Cancer Res. 2005;65:7137–44.

    Article  CAS  PubMed  Google Scholar 

  • Garcia JJ, Hunt JL, Weinreb I, McHugh JB, Leon Barnes E, et al. Fluorescence in situ hybridization for detection of MAML2 rearrangements in oncocytic mucoepidermoid carcinomas: utility as a diagnostic test. Hum Pathol. 2011;42(12):2001–9.

    Article  CAS  PubMed  Google Scholar 

  • Luk PP, Wykes J, Selinger CI, Ekmejian R, Tay J, Gao K, et al. Diagnostic and prognostic utility of Mastermind-like 2 (MAML2) gene rearrangement detection by fluorescent in situ hybridization (FISH) in mucoepidermoid carcinoma of the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:530–41.

    Article  PubMed  Google Scholar 

  • Okumura Y, Nakano S, Murase T, Ueda K, Kawakita D, Nagao T, et al. Prognostic impact of CRTC1/3-MAML2 fusions in salivary gland mucoepidermoid carcinoma: a multi-institutional retrospective study. Cancer Sc. 2020;111(11):4195–204.

    Article  CAS  Google Scholar 

  • Seethala RR, Dacic S, Cieply K, Kelly LM, Nikiforova MN. A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am J Surg Pathol. 2010;34:1106–21.

    Article  PubMed  Google Scholar 

  • Skálová A, Agaimy A, Stanowska A, Baneckova M, Ptakova N, et al. Molecular profiling of salivary oncocytic mucoepidermoid carcinomas helps to resolve differential diagnostic dilemma with low grade oncocytic lesions. AM J Surg Pathol. 2020;44:1612–22.

    Article  PubMed  Google Scholar 

  • Tonon G, Modi S, Wu L, Kubo A, Coxon AB, Komiya T et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signalling pathway (published correction appears in Nat Genet 2003;33(3):430) (letter). Nat Genet. 2003;33:208–13.

    Google Scholar 

Microsecretory Adenocarcinoma

  • Bishop A, Weinreb I, Swanson D, Westra WH, Qureshi HS, Sciubba J, et al. Microsecretory adenocarcinoma: a novel salivary gland tumor characterized by a recurrent MEF2C-SS18 fusion. Am J Surg Pathol. 2019;43:1023–32.

    Article  PubMed  Google Scholar 

  • Bishop JA, Koduru P, Veremis BM, Oliai BR, Weinreb I, Rooper LM, et al. SS18 break-apart fluorescence in situ hybridization is a practical and effective method for diagnosing microsecretory adenocarcinoma of salivary glands. Head Neck Pathol. 2021a;15(3):723–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop JA, Sajed DP, Weinred I, Dickson BC, Bilodeau EA, Agaimy A, et al. Microsecretory adenocarcinoma of salivary glands: an expanded series of 24 cases. Head and Neck Pathol. 2021b; https://doi.org/10.1007/s12105-021-01331-7.

  • Kawakami F, Nagao T, Honda Y, Sakata J, Yoshida R, Nakayama H, et al. Microsecretory adenocarcinoma of the hard palate: a case report of a recently described entity. Pathol Int. 2020;70:781–5.

    Article  CAS  PubMed  Google Scholar 

  • Rooper LM. Emerging Entities in Salivary Pathology: a practical review of sclerosing microcystic adenocarcinoma, microsecretory adenocarcinoma, and secretory myoepithelial carcinoma. Surg Pathol Clin. 2021;14(1):137–50.

    Article  PubMed  Google Scholar 

Myoepithelial Carcinoma

  • Skálová A, WEinreb I, Hyrcza M, Simpson RHW, Laco J, Agaimy A, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement. Molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol. 2015;39:338–48.

    Article  PubMed  Google Scholar 

  • Skálová A, Agaimy A, Vanecek T, Baneckova M, Laco J, Prakova N, et al. Molecular profiling of clear cell myoepithelial carcinoma of salivary glands with EWSR1 rearrangement identifies frequent PLAG1 gene fusions but no EWSR1 fusion transcripts. Am J Surg Pathol. 2021;45:1–13.

    Article  PubMed  Google Scholar 

Polymorphous Adenocarcinoma

  • Batsakis JG, Pinkston GR, Luna MA, Byers RM, Sciubba JJ, Tillery GW. Adenocarcinoms of the oral cavity: a clinicopathologic study of terminal duct carcinomas. J Layngol Otol. 1983;97(9):825–35.

    Article  CAS  Google Scholar 

  • Fonseca I, Assaad A, Katabi N, Seethala R, Weinreb I, Wenig BM. Chapter 7: Polymorphous adenocarcinoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization Classification of head and neck tumours. 4th ed. Lyon: IARC; 2017. p. 163–87.

    Google Scholar 

  • Sebastiao APM, Xu B, Lozada JR, Pareja F, Geyer FC, Da Cruz PA, et al. Histologic spectrum of polymorphous adenocarcinoma of the salivary gland harbor genetic alterations affecting PRKD gene. Mod Pathol. 2020;33:65–73.

    Article  CAS  PubMed  Google Scholar 

  • Weinreb I, Piscuoglio S, Martelotto LG, Waggott D, Ng CKY, Perez-Ordonez B, et al. Hotspot activating PRKD1 somatic mutations in polymorphous low grade adenocarcinomas of the salivary gland. Nat Genet. 2013;46:1166–9.

    Article  Google Scholar 

  • Weinreb I, Zhang L, Tirunagari LMS, Sung YS, Chen CL, Perez-Ordonez B, et al. Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin. Genes Chromosomes Cancer. 2014;53(10):845–56. https://doi.org/10.1002/gcc.22195.

    Article  CAS  PubMed  Google Scholar 

  • Wysocki PT, Westra WH, Sidransky D, Brait M. Advancing toward a molecular characterisation of polymorphous low grade adenocarcinoma. Oral Oncol. 2017;74:192–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B, Aneja A, Ghossein R, Katabi N. Predictors of outcome in the phenotypic spectrum of polymorphous low grade adenocarcinoma (PLGA) and cribriform adenocarcinoma of salivary gland (CASG). A retrospective study of 69 patients. Am J Surg Pathol. 2016;40:1526–37.

    Article  PubMed  PubMed Central  Google Scholar 

Salivary Duct Carcinoma

  • Chiosea SI, Williams L, Griffith CC, Thompson LDR, Weinreb I, Bauman JE, et al. Molecular characterisation of apocrine salivary duct carcinoma. Am J Surg Pathol. 2015;39(6):744–52.

    Article  PubMed  Google Scholar 

  • Egebjerg K, Harwood CD, Woller NC, Kristensen CA, Mau-Sorensen M. HER2 positivity in histological subtypes of salivary gland carcinoma: a systematic review and meta-analysis. Front Oncol. 2021;11:693394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CJ, Barry MB, Vasef MA, DeYoung BR. HER-2/neu expression in salivary duct carcinoma: an immunohistochemical and chromogenic in situ hybridization study. Appl Immunohistochem Mol Morphol. 2008;16:54–8.

    Article  CAS  PubMed  Google Scholar 

  • Lewis JE, McKinney BC, Weiland LH, Ferreiro JA, Olsen KD. Salivary duct carcinoma. Clinicopathologic and immunohistochemical review of 26 cases. Cancer. 1996;77(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Williams MD, Bell D. Expression of PTEN, androgen receptor, HER2/neu, cytokeratin 5/6, estrogen receptor-beta, HMGA2, and PLAG1 in salivary duct carcinoma. Head Neck Pathol. 2019;13:529–34.

    Article  PubMed  Google Scholar 

  • Mitani Y, Rao PH, Maity SN, Lee YC, Ferrarotto R, Post JC, et al. Alterations associated with androgen receptor gene activation in salivary duct carcinoma of both sexes: potential therapeutic ramifications. Clin Cancer Res. 2014;20(24):6570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller SA, Gauthier MA, Blackburn J, Grady JP, Kraitsek S, Hajdu E, et al. Molecular patterns in salivary duct carcinoma identify prognostic subgroups. Mod Pathol. 2020;33(10):1896–909.

    Article  CAS  PubMed  Google Scholar 

  • Simpson RHW. Salivary duct carcinoma: new developments – morphological variants including pure in situ high grade lesions; proposed molecular classifications. Head Neck Pathol. 2013;7:S48–58.

    Article  PubMed  Google Scholar 

  • Skalova A, Starek I, Vanecek T, Kucerova V, Plank L, Szepe P, et al. Expression of HER-2/neu gene and protein in salivary duct carcinomas of parotid gland as revealed by fluorescence in-situ hybridization and immunohistochemistry. Histopathology. 2003;42:348–56.

    Article  CAS  PubMed  Google Scholar 

  • Williams MD, Roberts D, Blumenschein GR, Temam S, Merrill SK, Rosenthal DI, et al. Differential expression of hormonal and growth factor receptors in salivary duct carcinomas. Am J Surg Pathol. 2007;31:1645–52.

    Article  PubMed  Google Scholar 

  • Williams L, Thompson LDR, Seethala RR, Weinreb I, Assaad AM, Tuluc M, et al. Salivary duct carcinoma. The predominance of apocrine morphology, prevalence of histologic variants, and androgen receptor expression. Am J Surg Pathol. 2015;39:705–13.

    Article  PubMed  Google Scholar 

  • Wolff AC, Hammond EH, Allison KH, Harvey BE, Mangu PB, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36:2105–22.

    Article  CAS  PubMed  Google Scholar 

Sclerosing Microcystic Adenocarcinoma

  • Jiang R, Marquez J, Tower JI, Jacobs D, Chen W, Mehra S, et al. Sequencing of sclerosing microcystic adenocarcinoma identified mutational burden and somatic variants associated with tumorigenesis. Anticancer Res. 2020;40(11):6375–9.

    Article  CAS  PubMed  Google Scholar 

  • Mills AM, Policarpio-Nicholas MLC, Agaimy A, Wick MR, Mills SE. Sclerosing microcystic adenocarcinoma of the head and neck mucosa: a neoplasm closely resembling microcystic adnexal carcinoma. Head Neck Pathol. 2016;10(4):501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood A, Conn BI. Sclerosing microcystic adenocarcinoma of the tongue: a report of 2 further cases and review of literature. Oral Maxillofac Pathol. 2018;125(4):e94–102.

    Google Scholar 

Secretory Carcinoma

  • Black M, Liu CZ, Onozato M, Iafrate AJ, Darvishian F, Jour G, Cotzia P. Concurrent identification of novel EGFR-SEPT14 fusion and ETV6-RET fusion in secretory carcinoma of the salivary gland. Head Neck Pathol. 2020;14:817–21.

    Article  PubMed  Google Scholar 

  • Cipriani NA, Blair EA, Finkle J, Kraninger JL, Straus CM, Villaflor VM, et al. Salivary gland secretory carcinoma with high grade transformation, CDKN2A/B loss, distant metastasis and lack of sustained response to Crizotinib. Int J Surg Pathol. 2017;25(7):613–8.

    Article  PubMed  Google Scholar 

  • Hung YP, Jo VY, Hornick J. Immunohistochemistry with a pan-TRK antibody distinguishes secretory carcinoma of the salivary gland from acinic cell carcinoma. Histopathology. 2019;75:54–62.

    Article  PubMed  Google Scholar 

  • Ito Y, Ishibashi K, Masaki A, Fujii K, Fujiyoshi Y, Hattori H, et al. Mammary analogue secretory carcinoma of salivary glands: a clinicopathological and molecular study including 2 cases harboring ETV6-X fusion. Am J Surg Pathol. 2015;39:602–10.

    Article  PubMed  Google Scholar 

  • Kastnerova L, Luzar B, Goto K, Grishakov V, Gatalica Z, Kamarachev J, et al. Secretory carcinoma of the skin; report of 6 cases including a case with novel NFIX-PKN1 translocation. Am J Surg Pathol. 2019;43:1092–8.

    Article  PubMed  Google Scholar 

  • Knezevich SR, Garnett MJ, Pysher TJ, Beckwith B, Grundy PE, Sorensen PHB. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58:5046–8.

    CAS  PubMed  Google Scholar 

  • Na K, Hernandez-Prera JC, Lim JY, Woo HY, Yoon SO. Characterisation of novel genetic alterations in salivary gland secretory carcinoma. Mod Pathol. 2020;33:541–50.

    Article  CAS  PubMed  Google Scholar 

  • Rooper LM, Karantanos T, Ning Y, Bishop JA, Gordon SW, Kang H. Salivary secretory carcinoma with novel ETV6-MET fusion: expanding the molecular spectrum of a recently described entity. Am J Surg Pathol. 2018;42:1121–6.

    Article  PubMed  Google Scholar 

  • Sasaki E, Masago K, Fujita S, Suzuki H, Hanai N, Hosoda W. Salivary secretory carcinoma harboring a novel ALK fusion: expanding the molecular characterisation of carcinomas beyond the ETV6 gene. Am J Surg Pathol. 2020;44:962–9.

    Article  PubMed  Google Scholar 

  • Skálová A. Mammary analogue secretory carcinoma of salivary gland origin: an update and expanded morphologic and immunohistochemical spectrum of recently described entity. Head Neck Pathol. 2013;7:S30–6.

    Article  PubMed  Google Scholar 

  • Skálová A, Venecek T, Sima R, Laco J, Weinreb I, Perez-Ordonez B, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumour entity. Am J Surg Pathol. 2010;34:599–608.

    Article  PubMed  Google Scholar 

  • Skálová A, Vanecek T, Majewska H, Laco J, Grossmann P, Simpson RHW, et al. Mammary analogue secretory carcinoma of salivary gland with high-grade transformation. Report of 3 cases with ETV6-NTRK3 gene fusion and analysis of TP53, B-catenin, EGFR and CCND1 genes. Am J Surg Pathol. 2014;38:23–33.

    Article  PubMed  Google Scholar 

  • Skálová A, Vanecek T, Simpson RHW, Laco J, Majewska H, Baneckova M, et al. Molecular analysis of 25 ETV6 gene rearranged tumours with lack of detection of classical ETV6-NTRK3 fusion transcript by standard RT-PCR: Report of 4 cases harboring ETV6-X gene fusion. Am J Surg Pathol. 2016;40:3–13. https://doi.org/10.1097/PAS.0000000000000537.

    Article  PubMed  Google Scholar 

  • Skálová A, Vanecek T, Martinek P, Wenreb I, Stevens TM, Simpson RHW, et al. Molecular profiling of mammary analogue secretory carcinoma revealed a subset of tumors harboring a novel ETV6-RET translocation, report of 10 cases. Am J Surg Pathol. 2018;42:234–46.

    Article  PubMed  Google Scholar 

  • Skálová A, Baneckova M, Thompson LDR, Ptakova N, Stevens TM, Brcic L, et al. Expanding the molecular spectrum of secretory carcinoma of salivary glands with novel VIM-RET fusion. Am J Surg Pathol. 2020;44:1295–307.

    Article  PubMed  Google Scholar 

  • Tognon C, Garnett M, Kenward E, Kay R, Morisson K, Sorensen PHB. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signalling for fibroblast transformation. Cancer Res. 2001;61(24):8909–16.

    CAS  PubMed  Google Scholar 

  • Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary events in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.

    Article  CAS  PubMed  Google Scholar 

  • Wai DH, Knezevich SR, Lucas T, Jansen B, Kay RJ, Sorensen PHB. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase and transformed NIH3T3 cells. Oncogene. 2000;19:906–15.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Al Rasheed MRH, Antonescu CR, Alex D, Frosina D, Ghossein R, et al. Pan-TRK immunohistochemistry is a sensitive and specific ancillary tool in diagnosing secretory carcinoma of salivary gland and detecting ETV6-NTRK3 fusion. Histopathology. 2020;76(3):375–82.

    Article  PubMed  Google Scholar 

Pleomorphic Adenoma and Carcinoma Ex Pleomorphic Adenoma

  • Afshari MK, Fehr A, Nevado PT, Andersson MK, Stenman G. Activation of PLAG1 and HMGA2 by gene fusions involving the transcriptional regulator gene NFIB. Genes Chromosomes Cancer. 2020;59(11):652–60.

    Article  CAS  PubMed  Google Scholar 

  • Antony J, Gopalan V, Smith RA, Lam A. Carcinoma ex pleomorphic adenoma: a comprehensive review of clinical, pathological and molecular data. Head Neck Pathol. 2012;6:1–9.

    Article  PubMed  Google Scholar 

  • Bahrami A, Dalton JD, Shivakumar B, Krane J. PLAG1 alteration in carcinoma ex pleomorphic adenoma: immunohistochemical and fluorescence in situ hybridization studies of 22 cases. Head Neck Pathol. 2012;6:328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell D, Bullerdiek J, Gnepp DR, Schwartz MR, Stenman G, Triantafyllou A. Chapter 7: Pleomorphic adenoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization Classification of head and neck tumours. 4th ed. Lyon: IARC; 2017. p. 186–7.

    Google Scholar 

  • El-Naggar AK, Callender D, Coombes MM, Hurr K, Luna MA, Batsakis JG. Molecular genetic alterations in carcinoma ex-pleomorphic adenoma: a putative progression model? Genes Chromosomes Cancer. 2000;27:162–8.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Prera JC, Skálová A, Franchi A, Rinaldo A, Vander Poorten V, Zbären P, Ferlito A, Wenig BM. Pleomorphic adenoma: the great mimicker of malignancy. Histopathology. 2021 Sep;79(3):279–90.

    Article  PubMed  Google Scholar 

  • Katabi N, Ghossein R, Ho A, Dogan S, Zhang L, Sung YS, et al. Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. Hum Pathol. 2015;46:26–33.

    Article  CAS  PubMed  Google Scholar 

  • Katabi N, Xu B, Jungbluth AA, Zhang L, Shao SY, Lane J, et al. PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: a comparative study with PLAG1 genetic abnormalities. Histopathology. 2018;72(2):285–93.

    Article  PubMed  Google Scholar 

  • Matsuyama A, Hisaoka M, Nagao Y, Hashimoto H. Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: a molecular genetic and immunohistochemical study. Virchows Arch. 2011;458(5):583–92.

    Article  CAS  PubMed  Google Scholar 

  • Persson F, Andren Y, Winnes M, Wedell B, Nordkvist A, Gunhildur G, et al. High resolution genomic profiling of adenomas and carcinoma of the salivary glands reveals amplification, rearrangement and fusion of HMGA2. Genes Chromosomes Cancer. 2009;48(1):69–82.

    Article  CAS  PubMed  Google Scholar 

Basal Cell Adenoma and Adenocarcinoma

  • Fonseca I, Gnepp DR, Seethala R, Simpson RHW, Vielh P, Williams MD. Chapter 7: Basal cell adenocarcinoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization classification of head and neck tumours. 4th ed. Lyon: IARC; 2017. p. 169–70.

    Google Scholar 

  • Jo VY, Sholl LM, Krane JF. Distinctive patterns of CTNNB1 (Beta-catenin) alterations insalivary gland basal cell adenoma and basal cell adenocarcinoma. Am J Surg Pathol. 2016;40:1143–50.

    Article  PubMed  Google Scholar 

  • Li J, Fonseca I. Chapter 7: Basal cell adenoma. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. World Health Organization Classification of head and neck tumours. 4th ed. Lyon: IARC; 2017. p. 187–8.

    Google Scholar 

  • Wilson TC, Ma D, Tilak A, Tesdahl B, Robinson RA. Next generation sequencing in salivary gland basal cell adenocarcinoma and basal cell adenoma. Head and Neck Pathol. 2016;10:494–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruta Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheung, V.K.Y., Gupta, R. (2023). Molecular Pathology of Salivary Gland Tumors. In: Cheng, L., Netto, G.J., Eble, J.N. (eds) Molecular Surgical Pathology. Springer, Cham. https://doi.org/10.1007/978-3-031-35118-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35118-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35117-4

  • Online ISBN: 978-3-031-35118-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics