Skip to main content

Molecular Pathology of Prostate Cancer

  • Chapter
  • First Online:
Molecular Surgical Pathology

Abstract

Adenocarcinoma of the prostate is the most common noncutaneous cancer and the second leading cause of cancer-related death in males in Western populations. Also, its incidence has been increasing in regions traditionally found to have much lower levels (e.g., those in East and South East Asia). Our understanding of the molecular alterations driving the initiation, progression, response to therapeutic interventions, and treatment resistance have accelerated rapidly in the last several years. Most prostate cancers, from initiation to castration-resistant metastatic disease, show overexpression of MYC as a key oncogenic driver. Recent work has provided insights into distinct molecular subtypes of prostate cancer characterized by ETS gene rearrangements (TMPRSS2-ERG being the most common) and somatic mutations in SPOP, FOXA1 and a number of epigenetic regulators. Recurrent somatic genomic aberrations include copy number changes and mutations in tumor suppressors (e.g., PTEN, TP53, NKX3.1, CDKN1B, RB1, BRCA2, and ATM) and oncogenes (e.g., MYC, AR), as well as numerous DNA methylation changes (e.g., GSTP1, PTGS2, APC, ENDRB, and RASSF1). Germline studies have uncovered inherited variants associated with prostate cancer including in HOXB13, several in chromosome 8q24 that are associated with the control of MYC expression, and a number of DNA repair genes involved in homologous recombination mediated repair (e.g., BRCA2 and ATM). Overall, approximately 20–25% of fatal, metastatic castration-resistant prostate cancers harbor either germline, somatic, or combined germline/somatic alterations in DNA repair genes involving either homologous recombination pathway genes or mismatch repair genes. A number of morphological variants of prostate cancer, including small cell neuroendocrine carcinoma and other “androgen receptor indifferent” lesions, occur infrequently in primary tumors. However, as an apparent resistance mechanism, in response to newer androgen ablation and AR targeting agents, their incidence may be rising. Current and future directions to further improve our understanding and treatment of this disease include the use of computational pathology/artificial intelligence, studies of the tumor microenvironment, and improved understanding of the roles of the prostate infection in disease initiation, progression, and response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Suggested Readings

  • Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol. 2017;2017 https://doi.org/10.1200/PO.17.00029.

  • Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019;5:471–8.

    Article  PubMed  Google Scholar 

  • Adams EJ, Karthaus WR, Hoover E, Liu D, Gruet A, Zhang Z, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019;571:408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonarakis ES, Shaukat F, Isaacsson Velho P, Kaur H, Shenderov E, Pardoll DM, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur Urol. 2019;75:378–82.

    Article  CAS  PubMed  Google Scholar 

  • Aparicio A, Xiao L, Tapia ELN, Hoang A, Ramesh N, Wu W, et al. The aggressive variant prostate carcinoma (AVPC) molecular signature (-MS) and platinum-sensitivity in castration resistant prostate cancer (CRPC). J Clin Oncol. 2017;35:5013.

    Article  Google Scholar 

  • Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50:645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora K, Barbieri CE. Molecular subtypes of prostate cancer. Curr Oncol Rep. 2018;20:58.

    Article  PubMed  Google Scholar 

  • Arriaga JM, Panja S, Alshalalfa M, Zhao J, Zou M, Giacobbe A, et al. A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. Nat Cancer. 2020;1:1082–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asrani K, Torres AFC, Woo J, Vidotto T, Tsai HK, Luo J, et al. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J Pathol. 2021;255(4):425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153:666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baca SC, Takeda DY, Seo J-H, Hwang J, Ku SY, Arafeh R, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat Commun. 2021;12:1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasocchi T, Theurillat J-PP. SPOP-mutant prostate cancer: translating fundamental biology into patient care. Cancer Lett. 2021;529:11–8.

    Article  PubMed  Google Scholar 

  • Butler W, Huang J. Neuroendocrine cells of the prostate: histology, biological functions, and molecular mechanisms. Precis Clin Med. 2021;4:25–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  • Cortés-Ciriano I, Lee JJ-K, Xi R, Jain D, Jung YL, Yang L, et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020;52:331–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh D, Xu J, Yang X, Shimelis H, Fang S, Qiu Y. Regulation of p27 (Kip1) by ubiquitin E3 ligase RNF6. Pharmaceutics. 2022;14:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong B, Fan L, Yang B, Chen W, Li Y, Wu K, et al. Use of circulating tumor DNA for the clinical management of metastatic castration-resistant prostate cancer: a multicenter, real-world study. J Natl Compr Canc Netw. 2021;19:905–14.

    Article  CAS  PubMed  Google Scholar 

  • Faisal FA, Murali S, Kaur H, Vidotto T, Guedes LB, Salles DC, et al. CDKN1B deletions are associated with metastasis in African American men with clinically localized, surgically treated prostate cancer. Clin Cancer Res. 2020;26:2595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Li D, Yin J, Pan H, Ye H, Bowman J, et al. TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther. 2022;29(10):1463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20:4904–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontugne J, Cai PY, Alnajar H, Bhinder B, Park K, Ye H, et al. Collision tumors revealed by prospectively assessing subtype-defining molecular alterations in 904 individual prostate cancer foci. JCI Insight. 2022;7:e155309.

    Article  PubMed  PubMed Central  Google Scholar 

  • George RS, Htoo A, Cheng M, Masterson TM, Huang K, Adra N, et al. Artificial intelligence in prostate cancer: definitions, current research, and future directions. Urol Oncol. 2022;40(6):262–70.

    Article  PubMed  Google Scholar 

  • Ghiam AF, Cairns RA, Thoms J, Dal Pra A, Ahmed O, Meng A, et al. IDH mutation status in prostate cancer. Oncogene. 2012;31:3826.

    Article  CAS  PubMed  Google Scholar 

  • Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C, Taplin M-E. Genetic testing in prostate cancer management: considerations informing primary care. CA Cancer J Clin. 2022;72(4):360–71.

    Article  PubMed  Google Scholar 

  • Guedes LB, Almutairi F, Haffner MC, Rajoria G, Liu Z, Klimek S, et al. Analytic, preanalytic, and clinical validation of p53 IHC for detection of TP53 missense mutation in prostate cancer. Clin Cancer Res. 2017;23:4693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Wu Y, Nouri M, Spisak S, Russo JW, Sowalsky AG, et al. Androgen receptor and MYC equilibration centralizes on developmental super-enhancer. Nat Commun. 2021;12:1–18.

    Article  Google Scholar 

  • Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol. 2008;21:1156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha Chung B, Horie S, Chiong E. The incidence, mortality, and risk factors of prostate cancer in Asian men. Prostate Int. 2019;7:1–8.

    Article  PubMed  Google Scholar 

  • Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget. 2011;2:627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haffner MC, Pellakuru LG, Ghosh S, Lotan TL, Nelson WG, De Marzo AM, et al. Tight correlation of 5-hydroxymethylcytosine and Polycomb marks in health and disease. Cell Cycle. 2013;12:1835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haffner MC, Weier C, Xu MM, Vaghasia A, Gürel B, Gümüşkaya B, et al. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization. J Pathol. 2016;238:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Heaphy CM, Joshu CE, Barber JR, Davis C, Lu J, Zarinshenas R, et al. The prostate tissue-based telomere biomarker as a prognostic tool for metastasis and death from prostate cancer after prostatectomy. bioRxiv. 2021.

    Google Scholar 

  • Heaphy CM, Yoon GS, Peskoe SB, Joshu CE, Lee TK, Giovannucci E, et al. Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death. Cancer Discov. 2013;3:1130–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Llodrà S, Segalés L, Safont A, Juanpere N, Lorenzo M, Fumadó L, et al. SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer. Prostate. 2019;79:1156–65.

    Article  PubMed  Google Scholar 

  • Hieronymus H, Murali R, Tin A, Yadav K, Abida W, Moller H, et al. Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. Elife. 2018;7:e37294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinsch A, Brolund M, Hube-Magg C, Kluth M, Simon R, Möller-Koop C, et al. Immunohistochemically detected IDH1R132H mutation is rare and mostly heterogeneous in prostate cancer. World J Urol. 2018;36:877–82.

    Article  CAS  PubMed  Google Scholar 

  • Horak P, Weischenfeldt J, von Amsberg G, Beyer B, Schütte A, Uhrig S, et al. Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud. 2019;5:a003657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15:222–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect. 2017;6:R146–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd SG, Carm KT, Bogaard M, Olsen LG, Bakken AC, Løvf M, et al. High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia. 2021;23:634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kron KJ, Murison A, Zhou S, Huang V, Yamaguchi TN, Shiah Y-J, et al. TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet. 2017;49:1336–45.

    Article  CAS  PubMed  Google Scholar 

  • Lancho O, Herranz D. The MYC enhancer-ome: long-range transcriptional regulation of MYC in cancer. Trends Cancer Res. 2018;4:810–22.

    Article  CAS  Google Scholar 

  • Liu W, Xie CC, Thomas CY, Kim S-T, Lindberg J, Egevad L, et al. Genetic markers associated with early cancer-specific mortality following prostatectomy. Cancer. 2013;119:2405–12.

    Article  CAS  PubMed  Google Scholar 

  • Lozano R, Castro E, Aragón IM, Cendón Y, Cattrini C, López-Casas PP, et al. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer. 2020;124:552–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu C, Brown LC, Antonarakis ES, Armstrong AJ, Luo J. Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations. Prostate Cancer Prostatic Dis. 2020;23:381–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J, Attard G, Balk SP, Bevan C, Burnstein K, Cato L, et al. Role of androgen receptor variants in prostate cancer: report from the 2017 mission androgen receptor variants meeting. Eur Urol. 2018;73:715–23.

    Article  PubMed  Google Scholar 

  • Ma TM, Romero T, Nickols NG, Rettig MB, Garraway IP, Roach M 3rd, et al. Comparison of response to definitive radiotherapy for localized prostate cancer in Black and White men: a meta-analysis. JAMA Netw Open. 2021;4:e2139769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxwell KN, Cheng HH, Powers J, Gulati R, Ledet EM, Morrison C, et al. Inherited TP53 variants and risk of prostate cancer. Eur Urol. 2022;81(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  • McKay RR, Sarkar RR, Kumar A, Einck JP, Garraway IP, Lynch JA, et al. Outcomes of Black men with prostate cancer treated with radiation therapy in the Veterans Health Administration. Cancer. 2021;127:403–11.

    Article  CAS  PubMed  Google Scholar 

  • Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 2016;35:909–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG, et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol. 2003;163:923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, et al. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest. 2022;132:e155031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS factors in prostate cancer. In: Dehm SM, Tindall DJ, editors. Prostate cancer: cellular and genetic mechanisms of disease development and progression. Cham: Springer; 2019. p. 409–36.

    Chapter  Google Scholar 

  • Nizialek E, Lotan TL, Isaacs WB, Yegnasubramanian S, Paller CJ, Antonarakis ES. The somatic mutation landscape of germline CHEK2-altered prostate cancer. J Clin Orthod. 2021;39:5084.

    Google Scholar 

  • Ozbek B, Ertunc O, Erikson A, Vidal ID, Alexandre CG, Guner G, et al. Multiplex immunohistochemical phenotyping of t cells in primary prostate cancer. medRxiv. 2021.

    Google Scholar 

  • Park SH, Fong K-W, Kim J, Wang F, Lu X, Lee Y, et al. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 2021;7:eabe2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parolia A, Cieslik M, Chu S-C, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;571:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch Repair Pathway. Genome Stability and Cancer. Front Mol Biosci. 2020;7:122.

    Article  PubMed  Google Scholar 

  • Pellakuru LG, Iwata T, Gurel B, Schultz D, Hicks J, Bethel C, et al. Global levels of H3K27me3 track with differentiation in vivo and are deregulated by MYC in prostate cancer. Am J Pathol. 2012;181:560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham M-TN. Topoisomerase 2 beta facilitates chromatin reorganization during androgen receptor induced transcription and contributes to chromoplexy in prostate cancer. Johns Hopkins University. 2021. Available: https://jscholarship.library.jhu.edu/handle/1774.2/66729

  • Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma AM, et al. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nat Commun. 2022;13:1–17.

    Article  Google Scholar 

  • Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174:758–769.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Primers. 2021;7:9.

    Article  PubMed  Google Scholar 

  • Rescigno P, Gurel B, Pereira R, Crespo M, Rekowski J, Rediti M, et al. Characterizing CDK12-mutated prostate cancers. Clin Cancer Res. 2021;27:566–74.

    Article  CAS  PubMed  Google Scholar 

  • Russo J, Giri VN. Germline testing and genetic counselling in prostate cancer. Nat Rev Urol. 2022;19(6):331–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabharwal N, Sharifi N. HSD3B1 genotypes conferring adrenal-restrictive and adrenal-permissive phenotypes in prostate cancer and beyond. Endocrinology. 2019;160:2180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of germline genetic variants that increase prostate cancer risk and influence development of aggressive disease. Cancers. 2021;13:760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiewer MJ, Knudsen KE. DNA damage response in prostate cancer. Cold Spring Harb Perspect Med. 2019;9:a030486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlomm T, Iwers L, Kirstein P, Jessen B, Köllermann J, Minner S, et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol. 2008;21:1371–8.

    Article  CAS  PubMed  Google Scholar 

  • Sedhom R, Antonarakis ES. Clinical implications of mismatch repair deficiency in prostate cancer. Future Oncol. 2019;15:2395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sena LA, Kumar R, Sanin DE, Thompson EA, Rosen DM, Dalrymple SL, et al. Prostate cancer androgen receptor activity dictates efficacy of Bipolar Androgen Therapy. bioRxiv. 2022.

    Google Scholar 

  • Shrestha E, Coulter JB, Guzman W, Ozbek B, Hess MM, Mummert L, et al. Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proc Natl Acad Sci U S A. 2021;118:e2018976118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng M, Zhou S, Cai C, Lupien M, He HH. Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell. 2021;12:29–38.

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Sharifi N. Germline HSD3B1 genetics and prostate cancer outcomes. Urology. 2020;145:13–21.

    Article  PubMed  Google Scholar 

  • Thomas DJ, Robinson M, King P, Hasan T, Charlton R, Martin J, et al. p53 expression and clinical outcome in prostate cancer. Br J Urol. 1993;72:778–81.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, et al. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat Commun. 2020;11:384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabzonlu L, Kulac I, Zheng Q, Hicks JL, Haffner MC, Nelson WG, et al. Molecular pathology of high-grade prostatic intraepithelial neoplasia: challenges and opportunities. Cold Spring Harb Perspect Med. 2018;9:a030403.

    Article  Google Scholar 

  • Vidal I, Zheng Q, Hicks JL, Chen J, Platz EA, Trock BJ, et al. GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS One. 2021;16:e0241934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walavalkar K, Saravanan B, Singh AK, Jayani RS, Nair A, Farooq U, et al. A rare variant of African ancestry activates 8q24 lncRNA hub by modulating cancer associated enhancer. Nat Commun. 2020;11:3598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Ma J, Botuyan MV, Cui G, Yan Y, Ding D, et al. ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Sci Adv. 2021;7:eabd9208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Classification of Tumors: Urinary and Male Genital Tumors. International Agency for Research on Cancer; 2022; 2022.

    Google Scholar 

  • Williams JL, Greer PA, Squire JA. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet. 2014;207:474–88.

    Article  CAS  PubMed  Google Scholar 

  • Wokołorczyk D, Kluźniak W, Stempa K, Rusak B, Huzarski T, Gronwald J, et al. PALB2 mutations and prostate cancer risk and survival. Br J Cancer. 2021;125:569–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yu H, Zheng SL, Na R, Mamawala M, Landis T, et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate. 2018;78:607–15.

    Article  CAS  PubMed  Google Scholar 

  • Yegnasubramanian S, De Marzo AM, Nelson WG. Prostate cancer epigenetics: from basic mechanisms to clinical implications. Cold Spring Harb Perspect Med. 2019;9:a030445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo M. De Marzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Nelson, W.G., Sfanos, K., Yegnasubramanian, S., De Marzo, A.M. (2023). Molecular Pathology of Prostate Cancer. In: Cheng, L., Netto, G.J., Eble, J.N. (eds) Molecular Surgical Pathology. Springer, Cham. https://doi.org/10.1007/978-3-031-35118-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35118-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35117-4

  • Online ISBN: 978-3-031-35118-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics