Skip to main content

Overview of Clinically Available Radiotracers for Imaging in Neurodegenerative Disorders

  • Chapter
  • First Online:
Molecular Imaging of Neurodegenerative Disorders
  • 413 Accesses

Abstract

Well-designed radiotracers for molecular imaging are powerful tools for the investigation of neurodegenerative disorders and for providing new means for disease treatment and diagnosis. This chapter provides an overview of prominent radiotracers now in clinical use for imaging in neurodegenerative disorders. Emphasis is placed on the burgeoning arsenal of radiotracers for imaging with positron emission tomography, although important radiotracers for single-photon emission computerized tomography are also considered. They are discussed from a chemical and radiochemical perspective with respect to their design, synthesis, and production. Radiotracers are discussed in two categories, those acting through brain metabolic pathways and those acting by binding to specific proteins. The former category is illustrated with [18F]FDG and [18F]FDOPA and the latter category with radiotracers for various targets, including TSPO as a biomarker of neuroinflammation, radiotracers for β-amyloid and tau in Alzheimer’s disease, and radiotracers for synaptic vessel glycoprotein 2A (SV2A) as a biomarker of synaptic density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel GJ, Albers RW, Katzman R, Agranoff BW, editors. Brain Neurochemistry. 2nd ed. Boston: Little Brown; 1976. p. 388–413.

    Google Scholar 

  2. Sokoloff L, Reivich M, Kenendy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  3. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C-N, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [ F]2-deoxy 2-fluoro-D-glucose. J Nucl Med. 1978;10:1154–61.

    Google Scholar 

  4. Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med. 2002;32:6–12. https://doi.org/10.1053/snuc.2002.29270.

    Article  PubMed  Google Scholar 

  5. Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of NCA 2-[18F]fluoro-2-deoxy-2-glucose. J Nucl Med. 1986;27:235–8.

    CAS  PubMed  Google Scholar 

  6. Sowa AR, Jackson IM, Desmond TJ, Alicea J, Mufarreh AJ, Pham JM, Stauff J, Winton WP, Fawaz MV, Henderson BD, Hockley BG, Rogers VE, Koeppe RA, Scott PJH. Futureproofing [18F]fludeoxyglucose manufacture at an academic medical center. EJNMMI Radiopharm Chem. 2018;3:12. https://doi.org/10.1186/s41181-018-0048-x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neves ACB, Hrynchak I, Fonseca I, Alves VHP, Pereira MM, Falcão A, Abrunhosa AJ. Advances in the automated synthesis of 6-[18F]fluoro-L-DOPA. EJNMMI Radiopharm Chem. 2021;6:11. https://doi.org/10.1186/s41181-021-00126-z.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luurtsema G, Boersma HH, Schepers M, de Vries AMT, Maas B, Zijlma R, de Vries EFJ, Elsinga PH. Improved GMP-compliant multi-dose production and quality control of 6-[18F]fluoro-L-DOPA. EJNMMI Radiopharm Chem. 2016;1:7. https://doi.org/10.1186/s41181-016-0009-1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Libert LC, Franci X, Plenevaux AR, Oui T, Maruoka K, Luxen AJ. Production at the Curie level of no-carrier-added 6-18F-fluoro-L-dopa. J Nucl Med. 2013;54:1154–61.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen VL, Soerensen MA, Dam JH, Langkjaer N, Petersen H, Bender DA, Fugloe D, Huynh THV. GMP production of 6-[18F]fluoro-DOPA for PET/CT imaging by different synthetic routes: a three center experience. EJNMMI Radiopharm Chem. 2021;6:21. https://doi.org/10.1186/s41181-021-00135-y.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, Henderson BD, Erhard T, Bruetting C, Skaddan MB, Sanford MS, Scott PJH. Synthesis of high-molar-activity [18F]6-fluoro-L-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc. 2020;15:1742–59. https://doi.org/10.1038/s41596-020-0305-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pike VW. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr Med Chem. 2016;23:1818–69. https://doi.org/10.2174/0929867323666160418114826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30:431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tiepolt S, Patt M, Aghakhanyan G, Meyer PM, Hesse S, Barthel H, Sabri O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem. 2019;4:17. https://doi.org/10.1186/s41181-019-0070-7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Young PNE, Estarallas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jiménez D, Betts MJ, McGlinchey E, Berron D, O’Connor A, Fox NC, Pereira JB, Jagust W, Carter SF, Paterson RW, Schöll M. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Therapy. 2020;12:49. https://doi.org/10.1186/s13195-020-00612-7.

    Article  Google Scholar 

  16. Chauveau F, Becker G, Boutin H. Have (R)-[11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging. 2021;49:201–20. https://doi.org/10.1007/s00259-021-05425-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential principles and recent progress in the development of TSPO PET ligands for neuroinflammation imaging. Curr Med Chem. 2022;29:4862. https://doi.org/10.2174/0929867329666220329204054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uzuegbunam BC, Librizzi D, Yousefi BH. PET radiopharmaceuticals for Alzheimer’s disease and Parkinson’s disease, the current and future landscape. Molecules. 2020;25:977. https://doi.org/10.3390/molecules25040977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becker G, Dammico S, Bahri MA, Salmon E. The rise of synaptic density PET imaging. Molecules. 2020;25:2303. https://doi.org/10.3390/molecules25102303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kenou BV, Manly LS, Rubovits SB, Umeozulu SA, Van Buskirk MG, Zhang AS, Pike VW, Zanotti-Fregonara P, Henter ID, Innis RB. Cyclooxygenases as potential PET imaging biomarkers to explore neuroinflammation in dementia. J Nucl Med. 2022;63:53S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kilbourn MR. 11C- and 18F-radiotracers for in vivo imaging of the dopamine system: past, present and future. Biomedicine. 2021;9:108. https://doi.org/10.3390/biomedicines9020108.

    Article  CAS  Google Scholar 

  22. Bohnen NI, Kanel P, Müller MLTM. Molecular imaging of the cholinergic system in Parkinson’s disease. Int Rev Neurol. 2018;141:211–50. https://doi.org/10.1016/bs.irn.2018.07.027.

    Article  CAS  Google Scholar 

  23. Hong J, Telu S, Zhang Y, Miller WH, Shetty HU, Morse CL, Pike VW. Translation of 11C-labeled tracer synthesis to a CGMP environment as exemplified by [11C]ER176 for PET imaging of human TSPO. Nat Protoc. 2021;16:4419–45. https://doi.org/10.1038/s41596-021-00584-4.

    Article  CAS  PubMed  Google Scholar 

  24. Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-aryl benzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54.

    Article  CAS  PubMed  Google Scholar 

  25. Klunk WE, Engle H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  CAS  PubMed  Google Scholar 

  26. Lu S, Haskali MB, Ruley KM, Dreyfus NJF, DuBois SL, Paul S, Liow J-S, Morse CL, Kowalski A, Gladding RL, Gilmore J, Mogg AJ, Michelle Morin SM, Lindsay-Scott PJ, Ruble JC, Kant NA, Shcherbinin S, Barth VN, Johnson MP, Cuadrado M, Jambrina E, Mannes AJ, Nuthall HN, Zoghbi SS, Jesudason CD, Innis RB, Pike VW. PET ligands [18F]LSN3316612 and [11C]LSN3316612 quantify O-linked-β-N-acetyl-glucosamine hydrolase in the brain. Sci Transl Med. 2020;12:eaau2939. https://doi.org/10.1126/scitranslmed.aau2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nabulsi NB, Mercier J, Holden D, Carré S, Najafzadeh S, Vandergeten M-C, Lin S, Deo A, Price N, Wood M, Lara-Jaime T, Montel F, Laruelle M, Carson RE, Hannestad J, Huang Y. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;5:777–84.

    Article  Google Scholar 

  28. Rokka J, Schlein E, Eriksson J. Improved synthesis of SV2A targeting radiotracer [11C]UCB-J. EJNMMI Radiopharm Chem. 2019;4:30. https://doi.org/10.1186/s41181-019-0080-5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sephton SM, Miklovicz T, Russell JJ, Doke A, Li L, Boros I, Aigbirhio FI. Automated radiosynthesis of [11C]UCB-J for imaging synaptic density by positron emission tomography. J Label Compd Radiopharm. 2020;63:151–6. https://doi.org/10.1002/jlcr.3828.

    Article  CAS  Google Scholar 

  30. Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A. Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labeled ligand ([18F]UCB-H). J Med Chem. 2016;59:8955–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VWP was supported by the Intramural Research Program of the National Institutes of Health (National Institute of Mental Health, Project ZIA-MH002793). VWP thanks Dr. Shuiyu Lu (NIMH) for reading and checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor W. Pike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pike, V.W. (2023). Overview of Clinically Available Radiotracers for Imaging in Neurodegenerative Disorders. In: Cross, D.J., Mosci, K., Minoshima, S. (eds) Molecular Imaging of Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-35098-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35098-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35097-9

  • Online ISBN: 978-3-031-35098-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics