Skip to main content

Working at High Altitude

  • Chapter
  • First Online:
High Altitude Medicine

Abstract

High altitude (HA) defined as elevation above 2500 meters above sea level, tests the resilience of the human physiology. To provide safe and effective medical care in such toilsome conditions requires: a comprehensive knowledge of the pathophysiology and mechanism of human adaptations along with understanding the effects of low atmospheric pressure on functioning of the medical equipment. Hypobaric conditions lead to fall in the arterial oxygen levels which impair oxygen delivery and consequentially the metabolism of the tissues. Acute mountain sickness (AMS) is one of the commonest altitude related illness which in its mildest forms can be reversed by simple descent to normal plains. Any additional stress in the form of injuries requiring surgical intervention or anesthesia administration lays more burden on the human body dealing with physiological adaptations. Systemic changes pose patients to higher perioperative bleeding risks due to coagulation abnormalities or thromboembolism due to polycythemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton and Hall. Text book of medical physiology. 12th ed. Philadelphia: Elsevier. p. 527–34. chapter 43

    Google Scholar 

  2. Luks AM. Physiology in medicine: a physiologic approach to prevention and treatment of acute high-altitude illnesses. J Appl Physiol. 2015;118:509–19.

    Article  CAS  PubMed  Google Scholar 

  3. Lumb A. Nunn's applied respiratory physiology. 9th ed. Elsevier; 2010. chapter 16. p. 205–17.

    Google Scholar 

  4. McGraw-Hill Education. Harrison’s principles of internal medicine, vol. 2. 20th ed. McGraw-Hill Education; 2018. chapter 453. p. 3333–46.

    Google Scholar 

  5. Wolfel EE, Levine BD. The cardiovascular system at high altitude. In: Hornbein TF, Schoene RB, editors. High altitude: an exploration of human adaptation. New York: Marcel Dekker; 2001.

    Google Scholar 

  6. Naeje R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010;52:456–66.

    Article  Google Scholar 

  7. Zhu L, Fan M. Impact of plateau environment hypoxia on human cognitive function and intervention measures. Chin J Pharmacol Toxicol. 2017;31:87–92.

    Google Scholar 

  8. Pugh LGCE. Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500 m). J Physiol. 1964;170:344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wagner PD. A theoretical analysis of factors determining VO2 Max at sea level and altitude. Respir Physiol. 1996;106:329–43.

    Article  CAS  PubMed  Google Scholar 

  10. Singh MV, Salhan AK, Rawal SB, Tyagi AK, Kumar N, Verma SS, et al. Blood gases, hematology, and renal blood flow during prolonged mountain sojourns at 3500 and 5800m. Aviat Space Environ Med. 2009;74:533–6.

    Google Scholar 

  11. Palubiski LM, O’Halloran KD, O’Neill J. Renal physiological adaptation to high altitude: a systematic review. Front Physiol. 2020;11:756. https://doi.org/10.3389/fphys.2020.00756.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vij A. Effect of prolonged stay at high altitude on platelet aggregation and fibrinogen levels. Platelets. 2009;20:421–7.

    Article  CAS  PubMed  Google Scholar 

  13. Lehmann T, Mairbaurl H, Pleisch B, Maggiorni M, Bartsch P, Reinhart WH. Platelet count and function at high altitude and in high-altitude pulmonary edema. J Appl Physiol. 2006;100(2):690–4.

    Article  CAS  PubMed  Google Scholar 

  14. Anand A, Jha S, Saha A, Sharma V, Adya C. Thrombosis as a complication of extended stay at high altitude. Natl Med J India. 2001;14:197–201.

    CAS  PubMed  Google Scholar 

  15. Wani Z, Sharma M. Anesthesia considerations: high altitude and anesthesia. J Card Crit Care. 2017;1:30–3.

    Article  Google Scholar 

  16. Miller RD. Md Ms, Md MPBasics of Anesthesia, vol. 83. 6th ed. Philadelphia, PA: Saunders; 2011. p. 202–3.

    Google Scholar 

  17. Safar P, Tenecila R. High altitude physiology in relation to anesthesia and inhalational therapy. Anesthesiology. 1964;35:515–31.

    Article  Google Scholar 

  18. Rodriquez D Jr, Branson RD, Dorlac W, Dorlac G, Barnes SA, Johannigman JA. Effects of simulated altitude on ventilator performance. J Trauma. 2009;66:S172-7. https://doi.org/10.1097/TA.0b013e31819cdbd1.

    Article  PubMed  Google Scholar 

  19. Blakeman T, Britton T, Rodriquez D, Branson R. Performance of portable ventilators at altitude. J Trauma Acute Care Surg. 2014;77:S151-5. https://doi.org/10.1097/TA.0000000000000379.

    Article  PubMed  Google Scholar 

  20. Blancher M, Repellin M, Maignan M, Clapé C, Perrin A, Labarère J, et al. Accuracy of low-weight versus standard syringe infusion pump devices depending on altitude. Scand J Trauma Resusc Emerg Med. 2019;27:65. https://doi.org/10.1186/s13049-019-0643-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. King BR, Goss PW, Paterson MA, Crock PA, Anderson DG. Changes in altitude cause unintended insulin delivery from insulin pumps: mechanisms and implications. Diabetes Care. 2011;34:1932–3. https://doi.org/10.2337/dc11-0139.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Myers KS, Gardner-Thorpe C. Problems with capnography at high altitude. Anesthesia. 2004;59:69–72. https://doi.org/10.1111/j.1365-2044.2004.03447.

    Article  Google Scholar 

  23. Luks M, Swenson ER. Pulse oximetry at high altitude Andrew. High Alt Med Biol. 2011;12:109–19.

    Article  PubMed  Google Scholar 

  24. Luks AM, McIntosh SE, Grissom CK, Auerbach PS, Rodway GW, Schoene RB, et al. Wilderness medical society consensus guidelines for the prevention and treatment of acute altitude illness. Wilderness Environ Med. 2010;21:146–55.

    Article  PubMed  Google Scholar 

  25. Hackett PH, Shlim DR. High-altitude travel & altitude illness. In: Brunette GW, Nemhauser JB, editors. Disease control and prevention. CDC yellow book 2020: health information for international travel. New York: Oxford University Press; 2017.

    Google Scholar 

  26. Butterworth JF. Morgan & Mikhail’s clinical anesthesiology, vol. 63. 5th ed. McGraw-Hill; 2013. p. 170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sodhi, K., Khasne, R., Phillips, A. (2023). Working at High Altitude. In: Hidalgo, J., Da Re, S., D'Almeida, A.G. (eds) High Altitude Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-35092-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35092-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35091-7

  • Online ISBN: 978-3-031-35092-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics