Skip to main content

Mental Face Image Retrieval Based on a Closed-Loop Brain-Computer Interface

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2023)

Abstract

Retrieval of mental images from measured brain activity may facilitate communication, especially when verbal or muscular communication is impossible or inefficient. The existing work focuses mostly on retrieving the observed visual stimulus while our interest is on retrieving the imagined mental image. We present a closed-loop BCI framework to retrieve mental images of human faces. We utilize EEG signals as binary feedback to determine the relevance of an image to the target mental image. We employ the feedback to traverse the latent space of a generative model to propose new images closer to the actual target image. We evaluate the proposed framework on 13 volunteers. Unlike previous studies, we do not restrict the possible attributes of the resulting images to predefined semantic classes. Subjective and objective tests validate the ability of our model to retrieve face images similar to the actual target mental images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this paper we designate visual mental images as “mental images”.

  2. 2.

    Similarity here is subjective and the subjects decide by themselves whether a face is similar to the target face or not.

  3. 3.

    19 people participated in the survey from the autonomous systems division at KTH. Participants were not aware of the details of the study, particularly the results.

  4. 4.

    We acknowledge recent work on GAN inversion for out-of-distribution images [47].

References

  1. Pearson, J., Naselaris, T., Holmes, E.A., Kosslyn, S.M.: Mental imagery: functional mechanisms and clinical applications. Trends Cogn. Sci. 19(10), 590–602 (2015)

    Article  Google Scholar 

  2. Ganis, G.: Mental imagery. In: Ramachandran, V. (ed.) Encyclopedia of Human Behavior, 2nd edn., pp. 601–607. Academic Press, San Diego (2012)

    Chapter  Google Scholar 

  3. Pearson, J.: The human imagination: the cognitive neuroscience of visual mental imagery. Nat. Rev. Neurosci. 20(10), 624–634 (2019)

    Article  Google Scholar 

  4. Du, C., Du, C., He, H.: Sharing deep generative representation for perceived image reconstruction from human brain activity. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1049–1056. IEEE (2017)

    Google Scholar 

  5. Zhang, X., Chen, X., Dong, M., Liu, H., Ge, C., Yao, L.: Multi-task generative adversarial learning on geometrical shape reconstruction from EEG brain signals. arXiv preprint arXiv:1907.13351 (2019)

  6. Nishimoto, S., Vu, A.T., Naselaris, T., Benjamini, Y., Yu, B., Gallant, J.L.: Reconstructing visual experiences from brain activity evoked by natural movies. Curr. Biol. 21(19), 1641–1646 (2011)

    Article  Google Scholar 

  7. Shen, G., Horikawa, T., Majima, K., Kamitani, Y.: Deep image reconstruction from human brain activity. PLoS Comput. Biol. 15(1), e1006633 (2019)

    Google Scholar 

  8. Gaziv, G., et al.: Self-supervised natural image reconstruction and large-scale semantic classification from brain activity. Neuroimage 254, 119121 (2022)

    Google Scholar 

  9. Naselaris, T., Prenger, R.J., Kay, K.N., Oliver, M., Gallant, J.L.: Bayesian reconstruction of natural images from human brain activity. Neuron 63(6), 902–915 (2009)

    Article  Google Scholar 

  10. Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., Shah, M.: Brain2image: converting brain signals into images. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1809–1817 (2017)

    Google Scholar 

  11. Fang, Y., Geman, D.: Experiments in mental face retrieval. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 637–646. Springer, Heidelberg (2005). https://doi.org/10.1007/11527923_66

    Chapter  Google Scholar 

  12. Ferecatu, M., Geman, D.: A statistical framework for image category search from a mental picture. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1087–1101 (2008)

    Article  Google Scholar 

  13. Pohlmeyer, E.A., Wang, J., Jangraw, D.C., Lou, B., Chang, S.F., Sajda, P.: Closing the loop in cortically-coupled computer vision: a brain-computer interface for searching image databases. J. Neural Eng. 8(3), 036025 (2011)

    Google Scholar 

  14. Ušćumlić, M., Chavarriaga, R., Millán, J.D.R.: An iterative framework for EEG-based image search: robust retrieval with weak classifiers. PloS One 8(8), e72018 (2013)

    Google Scholar 

  15. Ukkonen, A., Joona, P., Ruotsalo, T.: Generating images instead of retrieving them: Relevance feedback on generative adversarial networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1329–1338 (2020)

    Google Scholar 

  16. Kangassalo, L., Spapé, M., Ruotsalo, T.: Neuroadaptive modelling for generating images matching perceptual categories. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  17. Spape, M., Davis, K., Kangassalo, L., Ravaja, N., Sovijarvi-Spape, Z., Ruotsalo, T.: Brain-computer interface for generating personally attractive images. IEEE Trans. Affect. Comput. 1(1) (2021)

    Google Scholar 

  18. Luck, S.J.: Event-related potentials (2012)

    Google Scholar 

  19. Rugg, M.D., Curran, T.: Event-related potentials and recognition memory. Trends Cogn. Sci. 11(6), 251–257 (2007)

    Article  Google Scholar 

  20. Smith, M.E.: Neurophysiological manifestations of recollective experience during recognition memory judgments. J. Cogn. Neurosci. 5(1), 1–13 (1993)

    Article  Google Scholar 

  21. Johnson, J.S., Olshausen, B.A.: The earliest EEG signatures of object recognition in a cued-target task are postsensory. J. Vis. 5(4), 2–2 (2005)

    Article  Google Scholar 

  22. Bruce, V., Young, A.: Understanding face recognition. Br. J. Psychol. 77(3), 305–327 (1986)

    Article  Google Scholar 

  23. Gosling, A., Eimer, M.: An event-related brain potential study of explicit face recognition. Neuropsychologia 49(9), 2736–2745 (2011)

    Article  Google Scholar 

  24. Touryan, J., Gibson, L., Horne, J.H., Weber, P.: Real-time measurement of face recognition in rapid serial visual presentation. Front. Psychol. 2, 42 (2011)

    Article  Google Scholar 

  25. Caharel, S., Poiroux, S., Bernard, C., Thibaut, F., Lalonde, R., Rebai, M.: ERPS associated with familiarity and degree of familiarity during face recognition. Int. J. Neurosci. 112(12), 1499–1512 (2002)

    Article  Google Scholar 

  26. Schweinberger, S.R., Pfütze, E.M., Sommer, W.: Repetition priming and associative priming of face recognition: evidence from event-related potentials. J. Exp. Psychol. Learn. Mem. Cogn. 21(3), 722 (1995)

    Article  Google Scholar 

  27. Schweinberger, S.R., Huddy, V., Burton, A.M.: N250r: a face-selective brain response to stimulus repetitions. NeuroReport 15(9), 1501–1505 (2004)

    Article  Google Scholar 

  28. Schweinberger, S.R., Burton, A.M.: Covert recognition and the neural system for face processing. Cortex 39(1), 9–30 (2003)

    Article  Google Scholar 

  29. Bentin, S., Deouell, L.Y.: Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cogn. Neuropsychol. 17(1–3), 35–55 (2000)

    Article  Google Scholar 

  30. Eimer, M.: The face-specific N170 component reflects late stages in the structural encoding of faces. NeuroReport 11(10), 2319–2324 (2000)

    Article  Google Scholar 

  31. Courchesne, E., Hillyard, S.A., Galambos, R.: Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr. Clin. Neurophysiol. 39(2), 131–143 (1975)

    Article  Google Scholar 

  32. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  33. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  34. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  35. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  36. Tirupattur, P., Rawat, Y.S., Spampinato, C., Shah, M.: ThoughtViz: visualizing human thoughts using generative adversarial network. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 950–958 (2018)

    Google Scholar 

  37. Khare, S., Choubey, R.N., Amar, L., Udutalapalli, V.: NeuroVision: perceived image regeneration using cProGAN. Neural Comput. Appl. 34(8), 5979–5991 (2022)

    Article  Google Scholar 

  38. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Google Scholar 

  39. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  40. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  41. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for eeg-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Google Scholar 

  42. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  43. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  44. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  45. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)

    Google Scholar 

  46. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  47. Xia, W., Zhang, Y., Yang, Y., Xue, J.H., Zhou, B., Yang, M.H.: GAN inversion: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  48. Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T.P., Gao, S.: High-speed spelling with a noninvasive brain-computer interface. Proc. Natl. Acad. Sci. 112(44), E6058–E6067 (2015)

    Article  Google Scholar 

  49. Furdea, A., et al.: An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46(3), 617–625 (2009)

    Article  Google Scholar 

  50. Kübler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90–100 (2009)

    Article  Google Scholar 

  51. Song, D., et al.: Predicting human intention in visual observations of hand/object interactions. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1608–1615. IEEE (2013)

    Google Scholar 

  52. Butepage, J., Black, M.J., Kragic, D., Kjellstrom, H.: Deep representation learning for human motion prediction and classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6158–6166 (2017)

    Google Scholar 

  53. Bütepage, J., Kjellström, H., Kragic, D.: Anticipating many futures: online human motion prediction and generation for human-robot interaction. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4563–4570. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nona Rajabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajabi, N. et al. (2023). Mental Face Image Retrieval Based on a Closed-Loop Brain-Computer Interface. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2023. Lecture Notes in Computer Science(), vol 14019. Springer, Cham. https://doi.org/10.1007/978-3-031-35017-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35017-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35016-0

  • Online ISBN: 978-3-031-35017-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics