Skip to main content

Technologies: Limitless Possibilities and Effective Control

  • Chapter
  • First Online:
Reconsidering the Limits to Growth

Abstract

This chapter examines technologies’ current and future development in the framework of the Cybernetic Revolution—the third of the largest production (or technological) revolutions after the Agrarian and Industrial ones. The Cybernetic Revolution is a fundamental transition from industrial production to the production of services and goods based on the widespread implementation of self-regulating systems, that is, systems that can function in the absence or with minimum involvement of people and independently make complex decisions. This transition has already started and will continue up to the 2070s. The Cybernetic Revolution began its active development in the 1950s and has now finished its modernization phase. At the moment, the key technologies are information and communication technology and artificial intelligence, whose role in society is gradually increasing, and they come with benefits and potential risks. However, Grinin & Grinin assume that from the 2030s, the new—final—phase of the Cybernetic Revolution will start. Its major technological breakthroughs will lead to self-regulating systems’ formation and widespread implementation. So, Grinin & Grinin assume that new technologies will emerge. They forecast that it will be a set of technological spheres, and the MANBRIC complex/convergence is taking shape and will actively develop in the final phase of the Cybernetic Revolution (in the 2030s–2070s). The MANBRIC is an abbreviation formed from the initial letters of the seven breakthrough areas: Medicine-Additive-Nano-Bio-Robotics-Info-Cognitive technologies. These technological fields closely interact and corroborate each other and will continue to do so increasingly in the future. Due to its specific characteristics, medicine will be an integral part of the MANBRIC complex. Grinin & Grinin also offer some scenarios for further technological development. They significantly depend on the areas where technological breakthroughs will start. The main developmental scenario is presented as a breakthrough that will occur in the 2030s in the field of medicine, especially at the nexus of its new directions and some areas of the MANBRIC. There will be the introduction of innovations based on self-regulating systems in various fields of social activity (economy, medicine, biology, and socio-administrative structures). Grinin & Grinin describe the most favorable scenario and recommend how to move toward this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Most of the researches are related to forecasts of the development of some large areas, such as the development of bio-, nano- and information technologies (e.g., Venkatesh et al., 2003), or new fields such as nanomedicine (Moghimi, 2005), cloning (Gurdon & Colman, 1999), or nanorobots (Mallouk & Sen, 2009).

  2. 2.

    We should point out that automatization which was considered as the major characteristics of the start of the Cybernetic Revolution (see, e.g., Lilley, 1966, 1976; Philipson, 1962; Bernal, 1965; Benson & Lloyd, 1983) appears to be only the initial level of future self-regulating systems.

  3. 3.

    There are a number of works and books on the coming revolution which different scholars denote by different terms; however, we denote it as the Cybernetic Revolution. Of course, any term is always conventional, yet, it emphasizes the leading qualities of a phenomenon or a process. At the same time, it is not useful to simply enumerate the third, fourth or any other in succession industrial revolution with respect to a fundamentally new phenomenon, which are the current and future waves of technological innovation. In this context, we may mention “Third Industrial Revolution” (Rifkin, 2011) and “The Fourth Industrial Revolution” (Schwab, 2016). These books present interesting predictions, but their authors simply rely on empirical observations of current trends or reproduce someone else’s forecasts and do not rely on a scientifically derived paradigm. Meanwhile, forecasts based mainly on contemporary data or on profound and long-term trends and regularities are completely different things. From the titles it can be deduced that these authors actually believe that all three or four revolutions have similar nature, which, as the reader will see, is not the case at all since the nature of every technological revolution is unique.

  4. 4.

    About the initial phase of the Cybernetic Revolution, which was called the Scientific-Technical Revolution (see, e.g., Bernal, 1965; Philipson, 1962; Benson & Lloyd, 1983; Sylvester & Klotz, 1983).

  5. 5.

    It is important to point out, that due to this rapid development, artificial intelligence technology poses a major challenge for the humanity (Eden et al., 2012). In the recent years, communication technologies, data analysis and surveillance technology have considerably advanced. As a result, the problem has become even more acute. A number of works have already been devoted to the analysis of various aspects of this problem in the present and future (e.g. Westin, 1966; Ashman et al., 2014; Cecere et al., 2015; Moustaka et al., 2019; Schwartz, 1999; Solove, 2008; Brammer et al., 2020; Alharbi, 2020).

  6. 6.

    For more information on modern energy problems see chapter “Climate and Energy. Energy Transition Scenarios and Global Temperature Changes Based on Current Technologies and Trends” (Akaev & Davydova, 2023, this volume).

  7. 7.

    But there is also positive news regarding energy, see chapter “Climate and Energy. Energy Transition Scenarios and Global Temperature Changes Based on Current Technologies and Trends” (Akaev & Davydova, 2023, this volume).

  8. 8.

    About the Agrarian or Neolithic Revolution (see, e.g., Childe, 1934, 1944, 1948; Reed, 1977; Harris & Hillman, 1989); about the Industrial Revolution (see, e.g., Cipolla, 1976; Allen, 2009, 2011; Grinin & Korotayev, 2015; about evolution of Marxist theories on Industrial Revolution see Grinin and Grinin 2023b).

  9. 9.

    For the relationship between historical and technological development see chapter “Modeling Social Self-Organization and Historical Dynamics. Global Phase Transitions” (Malkov et al., 2023, this volume; see also Grinin & Grinin, 2023a, this book and Grinin & Grinin, 2023b).

  10. 10.

    See chapter “Global Agingan Integral Problem of the Future. How to Turn a Problem into a Development Driver?” (Grinin et al., 2023a, this volume) for details.

  11. 11.

    For more about these systems see chapter “Analyzing Social Self-Organization and Historical Dynamics. Future Cybernetic W-Society: Socio-Political Aspects” (Grinin & Grinin, 2023, this volume).

  12. 12.

    The order of the letters in the acronym does not reflect our understanding of the relative importance of areas of the complex. For example, biotechnologies will be more important than nanotechnologies, let alone additive manufacturing. The order is determined simply by the convenience of pronunciation.

  13. 13.

    This became clear during the period of COVID-19 pandemic. For examples of the increasing interdependence between medicine, biotechnology, information technology, and additive technologies as well as nanotechnologies (see Choong et al., 2020; Chauhan et al., 2020; Palestino et al., 2020; Tang et al., 2021; Weiss et al., 2020).

  14. 14.

    Nano-Bio-Info-Cogno.

  15. 15.

    For more details see chapter “Global Agingan Integral Problem of the Future. How to Turn a Problem into a Development Driver?” (Grinin et al., 2023a, this volume).

  16. 16.

    See chapter “Socio-Political Transformations. A Difficult Path to Cybernetic Society” (Grinin et al., 2023b, this volume) and chapter “Modeling Social Self-Organization and Historical Dynamics. Global Phase Transitions” (Malkov et al., 2023, this volume) for more details.

  17. 17.

    See chapter “Demography. Toward Optimization of Demographic Processes” (Korotayev et al., 2023b, this volume), chapter “Africathe Continent of the Future. Challenges and Opportunities” (Grinin & Korotayev, 2023, this volume), and chapter “Modeling Social Self-Organization and Historical Dynamics. Africa’s Futures” (Korotayev et al., 2023a, this volume).

  18. 18.

    See chapter “High Income and Low Income Countries. Toward a Common Goal at Different Speeds” (Grinin et al., 2023c, this volume).

References

  • Abi Younes, G., Ayoubi, C., Ballester, O., Cristelli, G., de Rassenfosse, G., Foray, D., et al. (2020). COVID-19: Insights from innovation economists. Science and Public Policy, paaa036. https://doi.org/10.1093/scipol/scaa028

  • Akaev, A. (2012). Matematicheskiye osnovy innovatsionno-tsiklicheskoy teorii ekonomicheskogo razvitiya Shumpetera – Kondrat′yeva. In A. Akaev et al. (Eds.), Kondrat′yevskiye volny: aspekty i perspektivy (pp. 110–135). Uchitel.

    Google Scholar 

  • Akaev, A., & Davydova, O. (2023). Climate and energy. Energy transition scenarios and global temperature changes based on current technologies and trends In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 53–70). Springer. https://doi.org/10.1007/978-3-031-34999-7_4

  • Alharbi, F. S. (2020). Dealing with data breaches amidst changes in technology. International Journal of Computer Science and Security (IJCSS), 14(3), 108–115.

    Google Scholar 

  • Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., & Heilig, G. K. (2011). Probabilistic projections of the total fertility rate for all countries. Demography, 48(3), 815–839. https://doi.org/10.1007/s13524-011-0040-5

    Article  Google Scholar 

  • Allen, R. C. (2009). The British industrial revolution in global perspective. Cambridge University Press.

    Book  Google Scholar 

  • Allen, R. C. (2011). Global economic history: A very short introduction. Oxford University Press.

    Book  Google Scholar 

  • Ashby, R. (1956). An introduction to cybernetics. Chapman and Hall.

    Book  Google Scholar 

  • Ashman, H., Brailsford, T., Cristea, A. I., Sheng, Q. Z., Stewart, C., Toms, E. G., & Wade, V. (2014). The ethical and social implications of personalization technologies for e-learning. Information & Management, 51(6), 819–832. https://doi.org/10.1016/j.im.2014.04.003

    Article  Google Scholar 

  • Bainbridge, W. S., & Roco, M. (2005). Managing Nano-Bio-Info-Cogno innovations: Converging technologies in society. Springer.

    Google Scholar 

  • Bardi, U. (2014). Extracted: How the quest for mineral wealth is plundering the planet. A report to the Club of Rome. Chelsea Green Publishing.

    Google Scholar 

  • Beer, S. (1959). Cybernetics and management. English Universities Press.

    Google Scholar 

  • Beer, S. (1994). Decision and control: The meaning of operational research and management cybernetics. Wiley.

    Google Scholar 

  • Benson, I., & Lloyd, J. (1983). New technology and industrial change: The impact of the scientific-technical revolution on labour and industry. Kogan Page.

    Google Scholar 

  • Berg, C. (2019). Sustainable action: Overcoming the barriers. A report to the Club of Rome. Routlege.

    Book  Google Scholar 

  • Bernal, J. D. (1965). Science in history (3rd ed.). Hawthorn Books.

    Google Scholar 

  • Brammer, S., Branicki, L., & Linnenluecke, M. (2020). COVID-19, societalization and the future of business in society. Science of the Total Environment, 34(4), 2–7. https://doi.org/10.5465/amp.2019.0053

    Article  Google Scholar 

  • Carree, M. A. (2003). Technological progress, structural change and productivity growth: A comment. Structural Change and Economic Dynamics, 14(1), 109–115.

    Article  Google Scholar 

  • Cecere, G., Le Guel, F., & Soulié, N. (2015). Perceived internet privacy concerns on social networks in Europe. Technological Forecasting and Social Change, 96, 277–287. https://doi.org/10.1016/j.techfore.2015.01.021

    Article  Google Scholar 

  • Chauhan, G., Madou, M. J., Kalra, S., Chopra, V., Ghosh, D., & Martinez-Chapa, S. O. (2020). Nanotechnology for COVID-19: Therapeutics and vaccine research. ACS Nano, 14(7), 7760–7782. https://doi.org/10.1021/acsnano.0c04006

    Article  Google Scholar 

  • Childe, V. G. (1934). New light on the most ancient east. Routledge & Kegan.

    Google Scholar 

  • Childe, V. G. (1944). Progress and archaeology. Watts.

    Google Scholar 

  • Childe, V. G. (1948). What happened in history. Penguin Books.

    Google Scholar 

  • Choong, Y. Y. C., Tan, H. W., Patel, D. C., Choong, W. T. N., Chen, C.-H., Low, H. Y., et al. (2020). The global rise of 3D printing during the COVID-19 pandemic. Nature Reviews Materials, 5(9), 637–639. https://doi.org/10.1038/s41578-020-00234-3

    Article  Google Scholar 

  • Cipolla, C. M. (Ed.). (1976). The industrial revolution, 1700–1914. Harvester Press.

    Google Scholar 

  • Dator, J. (2006). Alternative futures for K-waves. In T. C. Devezas (Ed.), Kondratieff waves, warfare and world security (pp. 311–317). IOS Press.

    Google Scholar 

  • DeCanio, S. J. (2016). Robots and humans – complements or substitutes? Journal of Macroeconomics, 49, 280–291.

    Article  Google Scholar 

  • Dupuy, J. (2009). On the origins of cognitive science. The mechanization of the mind. MIT Press.

    Google Scholar 

  • Eden, A. H., Moor, J. H., Soraker, J. H., Steinhart, E., & (Eds.). (2012). Singularity hypotheses: A scientific and philosophical assessment. Springer. https://doi.org/10.1007/978-3-642-32560-1

    Book  Google Scholar 

  • Farmer, J. D., & Lafond, F. (2015). How predictable is technological progress? http://arxiv.org/abs/1502.05274

  • Frey, C. B., & Osborne, M. A. (2017). The Future of Employment: How Susceptible are Jobs to Computerisation? Technological Forecasting and Social Change, 114, 254–280.

    Article  Google Scholar 

  • Fücks, R. (2013). Intelligent Wachsen. Die Grune Revolution. Carl Hanser Verlag.

    Book  Google Scholar 

  • Fukuyama, F. (2002). Our post-human future: Consequences of the bio-technology revolution. Farrar, Straus, and Giroux.

    Google Scholar 

  • Gabor, D., Colombo, U., King, A., & Galli, R. (1978). Beyond the age of waste. Pergamon Press.

    Google Scholar 

  • Galor, O., & Tsiddon, D. (1997). Technological progress, mobility and economic growth. The American Economic Review, 87(3), 363–382.

    Google Scholar 

  • Galor, O., & Weil, D. N. (2000). Population, technology, and growth: From Malthusian stagnation to the demographic transition and beyond. American Economic Review, 90(4), 806–828.

    Article  Google Scholar 

  • Graglia, M. A. V., & Von Huelsen, P. G. (2020). The sixth wave of innovation: Artificial intelligence and the impacts on employment. Journal on Innovation and Sustainability RISUS, 11(1), 3–17. https://doi.org/10.23925/2179-3565.2020v11i1p3-17

    Article  Google Scholar 

  • Gregg, B. (2018). The coming political: Challenges of artificial intelligence. Digital Culture & Society, 4(1), 157–180. https://doi.org/10.25969/mediarep/13530

    Article  Google Scholar 

  • Grinin, L. (2006). Proizvoditel’nyye sily i istoricheskiy protsess. URSS.

    Google Scholar 

  • Grinin, L. (2007). Production revolutions and periodization of history: A comparative and theoretic-mathematical approach. Social Evolution & History, 6(2), 11–55.

    Google Scholar 

  • Grinin, L., & Grinin, A. (2015a). Kiberneticheskaya revolyutsiya i shestoy tekhno-logicheskiy uklad. Istoricheskaya psikhologiya i sotsiologiya istorii, 8(1), 172–197.

    Google Scholar 

  • Grinin, L., & Grinin, A. (2015b). Ot rubil do nanorobotov. Mir na puti k epokhe samoupravlyayemykh sistem (istoriya tekhnologiy i opisaniye ikh budushchego). Uchitel.

    Google Scholar 

  • Grinin, L., & Grinin, A. (2016). The cybernetic revolution and the forthcoming epoch of self-regulating systems. Uchitel.

    Google Scholar 

  • Grinin, L., & Grinin, A. (2023a). Analyzing social self-organization and historical dynamics. Future cybernetic W-society: Socio-political aspects. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 491–519). Springer. https://doi.org/10.1007/978-3-031-34999-7_21

  • Grinin, L., & Grinin, A. (2023b). Historical Materialism: Does the Concept Have a Future? Social Evolution & History, 22(1), 143–178. https://doi.org/10.30884/seh/2023.01.07

    Article  Google Scholar 

  • Grinin, L., Grinin, A., & Korotayev, A. (2017a). Forthcoming Kondratieff wave, cybernetic revolution, and global aging. Technological Forecasting and Social Change, 115, 52–68. https://doi.org/10.1016/j.techfore.2016.09.017

    Article  Google Scholar 

  • Grinin, L., Grinin, A., & Korotayev, A. (2017b). The MANBRIC-technologies in the forthcoming technological revolution. In T. Devezas, J. Leitão, & A. Sarygulov (Eds.), Industry 4.0 – Entrepreneurship and structural change in the new digital landscape: What is coming on along with the fourth industrial revolution (pp. 243–261). Springer. https://doi.org/10.1007/978-3-319-49604-7_13

    Chapter  Google Scholar 

  • Grinin, L., Grinin, A., & Korotayev, A. (2020). A quantitative analysis of worldwide long-term technology growth: From 40,000 BCE to the early 22nd century. Technological Forecasting and Social Change, 155, 1–19. https://doi.org/10.1016/j.techfore.2020.119955

    Article  Google Scholar 

  • Grinin, L., Grinin, A., & Korotayev, A. (2021). COVID-19 pandemic as a trigger for the acceleration of the cybernetic revolution, transition from E-government to E-state, and change in social relations. Technological Forecasting & Social Change, 175, 1–16. https://doi.org/10.1016/j.techfore.2021.121348

    Article  Google Scholar 

  • Grinin, L., Grinin, A., & Korotayev, A. (2023a). Global aging – An integral problem of the future. How to turn a problem into a development driver? In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 117–135). Springer. https://doi.org/10.1007/978-3-031-34999-7_7

  • Grinin, L., Grinin, A., & Malkov, S. (2023b). Socio-political transformations. A difficult path to cybernetic society. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 169–189). Springer. https://doi.org/10.1007/978-3-031-34999-7_10

  • Grinin, L., & Korotayev, A. (2015). Great divergence and great convergence. A global perspective. Springer.

    Book  Google Scholar 

  • Grinin, L., & Korotayev, A. (2023). Africa – The continent of the future. Challenges and opportunities. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 225–238). Springer. https://doi.org/10.1007/978-3-031-34999-7_13

  • Grinin, L., Malkov, S., & Korotayev, A. (2023c). High income and low income countries. Toward a common goal at different speeds. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 207–224). Springer. https://doi.org/10.1007/978-3-031-34999-7_12

  • Gurdon, J. B., & Colman, A. (1999). The future of cloning. Nature, 402(6763), 743–746.

    Article  Google Scholar 

  • Harris, D., & Hillman, G. (Eds.). (1989). An evolutionary continuum of people – Plant interaction. Foraging and farming. The evolution of plant exploitation. Unwin Hyman.

    Google Scholar 

  • Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105–120. https://doi.org/10.1016/j.techfore.2015.12.014

    Article  Google Scholar 

  • Huebner, J. (2005). A possible declining trend for worldwide innovation. Technological Forecasting and Social Change, 72, 980–986.

    Article  Google Scholar 

  • Jotterand, F. (2008). Emerging conceptual, ethical and policy issues in bionanotechnology. Springer.

    Book  Google Scholar 

  • Kayal, A. (1999). Measuring the pace of technological progress: Implications for technological forecasting. Technological Forecasting and Social Change, 60(3), 237–245.

    Article  Google Scholar 

  • Komlosy, A. (2021). Entanglements of Catching-Up: Rethinking ‘Industrial Revolution’ from a Global Perspective. Journal of Globalization Studies, 12(1), 79–100. https://doi.org/10.30884/jogs/2021.01.05

    Article  Google Scholar 

  • Komlosy, A. (2023). Turn of an Era. Corona, Big Data and the Cybernetic Future. Journal of Globalization Studies, 14(1), 190–192. https://doi.org/10.30884/jogs/2023.01.12

    Article  Google Scholar 

  • Korotayev, A. (2020). The 21st century singularity in the big history perspective. A re-analysis. In A. Korotayev & D. LePoire (Eds.), The 21st century Singularity and global futures. A big history perspective (pp. 19–75). Springer. https://doi.org/10.1007/978-3-030-33730-8_2

    Chapter  Google Scholar 

  • Korotayev, A., Shulgin, S., Ustyuzhanin, V., Zinkina, J., & Grinin, L. (2023a). Modeling social self-organization and historical dynamics. Africa’s futures. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 461–490). Springer. https://doi.org/10.1007/978-3-031-34999-7_20

  • Korotayev, A., Malkov, S., & Musieva, J. (2023b). Demography. Toward optimization of demographic processes. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 97–116). Springer. https://doi.org/10.1007/978-3-031-34999-7_6

  • Kovalchuk, M. V. (2011). Konvergentsiya nauk i tekhnologiy – proryv v budushcheye. Rossiiskie nanotekhnologii, 3, 134–158.

    Google Scholar 

  • Kremer, M. (1993). Population growth and technological change: One million B.C. to 1990. The Quarterly Journal of Economics, 108(3), 681–716. https://doi.org/10.2307/2118405

    Article  Google Scholar 

  • Kurzweil, R. (2004). The law of accelerating returns. In C. Teuscher (Ed.), Alan Turing: Life and legacy of a great thinker (pp. 381–416). Springer. https://doi.org/10.1007/978-3-662-05642-4_16

    Chapter  Google Scholar 

  • Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Penguin.

    Google Scholar 

  • LePoire, D. J. (2005). Application of logistic analysis to the history of physics. Technological Forecasting and Social Change, 72(4), 471–479. https://doi.org/10.1016/S0040-1625(03)00044-1

    Article  Google Scholar 

  • Lilley, S. (1966). Men, machines and history: The story of tools and machines in relation to social progress. International Publishers.

    Google Scholar 

  • Lilley, S. (1976). Technological progress and the industrial revolution, 1700–1914. In C. M. Cipolla (Ed.), The industrial revolution, 1700–1914. The Fontana economic history of Europe (pp. 187–254). The Harvest Press.

    Google Scholar 

  • Linstone, H. (2014). Review of: Singularity hypotheses: A scientific and philosophical assessment, Amnon H. Eden, James H. Moor, Johnny H. Søraker, Eric Steinhart (Eds.), Springer Verlag (2012). Technological Forecasting and Social Change, 82, 226–227. https://doi.org/10.1016/j.techfore.2013.06.011

    Article  Google Scholar 

  • Liu, J., Chang, H., Forrest, J. Y.-L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technological Forecasting and Social Change, 158, 1–12. https://doi.org/10.1016/j.techfore.2020.120142

    Article  Google Scholar 

  • Lovins, L. H., Wallis, S., Wijkman, A., & Fullerton, J. (2018). A finer future. Creating an economy in service to life. New Society Publishers.

    Google Scholar 

  • Lutz, W., Goujon, A., Kc, S., Stonawski, M., & Stilianakis, N. (2018). Demographic and human capital scenarios for the 21st century: 2018 assessment for 201 countries. Publications Office of the European Union.

    Google Scholar 

  • Lynch, Z. (2004). Neurotechnology and society 2010–2060. Annals of the New York Academy of Sciences, 1031, 229–233.

    Article  Google Scholar 

  • Maddison, A. (2007). Contours of the world economy, 1–2030. Oxford University Press.

    Google Scholar 

  • Malkov, S., Grinin, L., Grinin, A., Musieva, J., & Korotayev, A. (2023). Modeling social self-organization and historical dynamics. Global phase transitions. In: V. Sadovnichy et al. (Eds.), Reconsidering the limits to growth. A report to the Russian Association of the Club of Rome (pp. 387–417). Springer. https://doi.org/10.1007/978-3-031-34999-7_18

  • Mallouk, T. E., & Sen, A. (2009). Powering nanorobots. Scientific American, 300(5), 72–77.

    Article  Google Scholar 

  • Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719–733.

    Article  Google Scholar 

  • McClelland, K. A., & Fararo, T. J. (Eds.). (2006). Purpose, meaning, and action: Control systems theories in sociology. Palgrave Macmillan.

    Google Scholar 

  • Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth: A report for the Club of Rome’s project on the predicament of mankind. Universe Books.

    Google Scholar 

  • Meadows, D., Randers, J., & Meadows, D. (2004). Limits to growth: The 30-year update. Earthscan.

    Google Scholar 

  • Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (2013). Machine learning. An artificial intelligence approach. Springer.

    Google Scholar 

  • Modis, T. (1999). Technological forecasting at the stock market. Technological Forecasting and Social Change, 62(3), 173–202.

    Article  Google Scholar 

  • Modis, T. (2005). Discussion of Huebner article. Technological Forecasting and Social Change, 72, 987–1000.

    Article  Google Scholar 

  • Moghimi, S. M. (2005). Nanomedicine: Current status and future prospects. The FASEB Journal, 19(3), 311–330. https://doi.org/10.1096/fj.04-2747rev

    Article  Google Scholar 

  • Montes, G. A., & Goertzel, B. (2019). Distributed, decentralized, and democratized artificial intelligence. Technological Forecasting and Social Change, 141, 354–358. https://doi.org/10.1016/j.techfore.2018.11.010

    Article  Google Scholar 

  • Moustaka, V., Theodosiou, Z., Vakali, A., Kounoudes, A., & Anthopoulos, L. G. (2019). Εnhancing social networking in smart cities: Privacy and security borderlines. Technological Forecasting and Social Change, 142, 285–300. https://doi.org/10.1016/j.techfore.2018.10.026

    Article  Google Scholar 

  • Nefiodow, L. (1996). Der sechste Kondratieff. Wege zur Produktivität und Vollbeschäftigung im Zeitalter der Information. Rhein-Sieg-Verlag.

    Google Scholar 

  • Nefiodow, L. (2017). The Sixth Kondratieff: A new long wave in the global economy. CreateSpace.

    Google Scholar 

  • Palestino, G., García-Silva, I., González-Ortega, O., & Rosales-Mendoza, S. (2020). Can nanotechnology help in the fight against COVID-19? Expert Review of Anti-infective Therapy, 18(9), 849–864. https://doi.org/10.1080/14787210.2020.1776115

    Article  Google Scholar 

  • Pestel, E. (1989). Beyond the limit to growth. The Club of Rome.

    Google Scholar 

  • Philipson, M. (Ed.). (1962). Automation: Implications for the future. Vintage.

    Google Scholar 

  • Phillips, F. (2011). The state of technological and social change: Impressions. Technological Forecasting and Social Change, 78(6), 1072–1078. https://doi.org/10.1016/j.techfore.2011.03.020

    Article  Google Scholar 

  • Plebe, A., & Perconti, P. (2020). Plurality: The end of singularity? In A. V. Korotayev & D. J. LePoire (Eds.), The 21st century singularity and global futures (pp. 163–184). Springer. https://doi.org/10.1007/978-3-030-33730-8_8

    Chapter  Google Scholar 

  • Podlazov, A. (2017). A theory of the global demographic process. Herald of the Russian Academy of Sciences, 87(3), 256–266. https://doi.org/10.1134/S1019331617030054

    Article  Google Scholar 

  • Polterovich, V. (2009). Gipoteza ob innovatsionnoy pauze i strategiya modernizatsii. Voprosy ekonomiki, 6, 4–23.

    Article  Google Scholar 

  • Raftery, A. E., Li, N., Ševčíková, H., Gerland, P., & Heilig, G. K. (2012). Bayesian probabilistic population projections for all countries. Proceedings of the National Academy of Sciences, 109(35), 13915–13921. https://doi.org/10.1073/pnas.1211452109

    Article  Google Scholar 

  • Randers, J. (2012). 2052. A report to the Club of Rome. Chelsea Green Publishing.

    Google Scholar 

  • Randers, J., Rockström, J., Stoknes, P. E., Golüke, U., Collste, D., & Cornell, S. (2018). Transformation is feasible. A report to the Club of Rome. Stockholm Resilience Centre.

    Google Scholar 

  • Reed, C. A. (Ed.). (1977). The origins of agriculture. Mouton.

    Google Scholar 

  • Rifkin, J. (2011). The third industrial revolution. How lateral power is transforming energy, the economy, and the world. Palgrave Macmillan.

    Google Scholar 

  • Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D. (2003). Artificial intelligence: A modern approach. Prentice Hall Upper.

    Google Scholar 

  • Schwab, K., & Malleret, T. (2020). COVID-19: The great reset. World Economic Forum.

    Google Scholar 

  • Schwab, K. (2016). The fourth industrial revolution. World Economic Forum.

    Google Scholar 

  • Schwartz, P. M. (1999). Internet privacy and the state. Connecticut Law Review, 32, 815–829.

    Google Scholar 

  • Scliaff, A., & Friedrichs, G. (1982). Microelectronics and society: For Better or for Worse. A report to The Club of Rome. Pergamon Press.

    Google Scholar 

  • Solove, D. J. (2008). Understanding privacy. Harvard University Press.

    Google Scholar 

  • Sylvester, E., & Klotz, L. C. (1983). The gene age: Genetic engineering and the next industrial revolution. Scribner.

    Google Scholar 

  • Tang, Z., Zhang, X., Shu, Y., Guo, M., Zhang, H., & Tao, W. (2021). Insights from nanotechnology in COVID-19 treatment. Nano Today, 36, 1–9. https://doi.org/10.1016/j.nantod.2020.101019

    Article  Google Scholar 

  • Tesler, G. S. (2004). Novaya kibernetika. Logos.

    Google Scholar 

  • Teulings, C., & Baldwin, R. (Eds.). (2014). Secular stagnation: Facts, causes, and cures. CEPR.

    Google Scholar 

  • Umpleby, S. A., & Dent, E. B. (1999). The origins and purposes of several traditions in systems theory and cybernetics. Cybernetics and Systems, 30, 79–103.

    Article  Google Scholar 

  • UN Population Division. (2019). World population prospects 2019. UN Population Division.

    Google Scholar 

  • UN Population Division. (2022). United Nations Population Division Database. United Nations. http://www.un.org/esa/population

    Google Scholar 

  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.

    Article  Google Scholar 

  • Vollset, S. E., Goren, E., Yuan, C.-W., Cao, J., Smith, A. E., Hsiao, T., et al. (2020). Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. The Lancet, 396(10258), 1285–1306. https://doi.org/10.1016/S0140-6736(20)30677-2

    Article  Google Scholar 

  • von Foerster, H., & Zopf, G. W. (1962). Principles of self-organization. In M. C. Yovits & S. Cameron (Eds.), Self-organization (pp. 31–50). Pergamon Press.

    Google Scholar 

  • Weiss, C., Carriere, M., Fusco, L., Capua, I., Regla-Nava, J. A., Pasquali, M., et al. (2020). Toward nano-technology-Enabled approaches against the COVID-19 pandemic. ACS Nano, 14(6), 6383–6406. https://doi.org/10.1021/acsnano.0c03697

    Article  Google Scholar 

  • Weizsäcker, E. U., & Wijkman, A. (2018). Come on! Capitalism, short-termism, population and the destruction of the planet. A report to the Club of Rome. Springer. https://doi.org/10.1007/978-1-4939-7419-1

    Book  Google Scholar 

  • Westin, A. F. (1966). Science, privacy, and freedom: Issues and proposals for the 1970’s. Part I. The current impact of surveillance on privacy. Columbia Law Review, 66(6), 1003–1050.

    Article  Google Scholar 

  • Widdowson, M. (2021). From Covid-19 to Zero-Gravity: Complex Crises and Production Revolutions. Journal of Globalization Studies, 12(1), 119–146. https://doi.org/10.30884/jogs/2021.01.07

    Article  Google Scholar 

  • Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. MIT Press.

    Google Scholar 

  • Wieser, M., & Slunecko, T. (2014). Cybernetics, radical behaviorism, cultural psychology, cultural-historical psychology. In T. Teo (Ed.), Encyclopedia of critical psychology. Springer.

    Google Scholar 

  • Wijkman, A., & Rockström, J. (2012). Bankrupting nature. Routledge.

    Google Scholar 

  • Wittgenstein Centre. (2022). Wittgenstein Centre Human Capital Data Explorer. Wittgenstein Centre. http://dataexplorer.wittgensteincentre.org/wcde-v2/

  • Yampolskiy, R. V., & Fox, J. (2012). Artificial general intelligence and the human mental model. In A. H. Eden, J. H. Moor, J. H. Søraker, & E. Steinhart (Eds.), Singularity hypotheses: A scientific and philosophical assessment (pp. 129–145). Springer. https://doi.org/10.1007/978-3-642-32560-1_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grinin, L., Grinin, A. (2023). Technologies: Limitless Possibilities and Effective Control. In: Sadovnichy, V., Akaev, A., Ilyin, I., Malkov, S., Grinin, L., Korotayev, A. (eds) Reconsidering the Limits to Growth. World-Systems Evolution and Global Futures. Springer, Cham. https://doi.org/10.1007/978-3-031-34999-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34999-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34998-0

  • Online ISBN: 978-3-031-34999-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics