Skip to main content
  • 69 Accesses

Abstract

The chapter describes the development of manometry for the diagnosis of OSA and provides an overview of a manometry system. Furthermore, clinical applications of manometry are discussed. The advantages and disadvantages compared to the gold standard for the detection of anatomic location and pattern of obstructions, drug-induced sleep endoscopy, are presented. In summary, manometry can be used to measure obstructions in the upper airway throughout a whole night without the use of drug-induced sleep. Current manometry systems are not able to clearly distinguish between a collapse at the tongue base and epiglottis. Future developments will probably enable the identification of epiglottic collapse with manometry as reviewed in the outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hudgel DW. Variable site of airway narrowing among obstructive sleep apnea patients. J Appl Physiol. 1986;61(4):1403–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tschopp K. Stellenwert der nächtlichen Manometrie der oberen Luftwege bei Schnarchen und obstruktiver Schlafapnoe. HNO Kompakt. 2009;17(6):1–8.

    Google Scholar 

  3. Tvinnereim M, Miljeteig H. Pressure recordings—a method for detecting site of upper airway obstruction in obstructive sleep apnea syndrome. Acta Otolaryngol. 1992;112(sup492):132–40. https://doi.org/10.3109/00016489209136832.

    Article  Google Scholar 

  4. Woodson BT, Wooten MR. Manometric and endoscopic localization of airway obstruction after uvulopalatopharyngoplasty. Otolaryngol Head Neck Surg. 1994;111(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  5. Han DW, Shim YH, Shin CS, Lee YW, Lee JS, Ahn SW. Estimation of the length of the nares-vocal cord. Anesth Analg. 2005;100(5):1533–5. https://doi.org/10.1213/01.Ane.0000149900.68354.33.

    Article  Google Scholar 

  6. Verse T, Pirsig W. Pharyngeal pressure measurements in topodiagnosis of obstructive sleep apnea. HNO. 1997;45(11):898–904. https://doi.org/10.1007/s001060050171.

    Article  CAS  PubMed  Google Scholar 

  7. Heo SJ, Park CM, Kim JS. Time-dependent changes in the obstruction pattern during drug-induced sleep endoscopy. Am J Otolaryngol. 2014;35(1):42–7. https://doi.org/10.1016/j.amjoto.2013.08.017.

    Article  PubMed  Google Scholar 

  8. Øverland B, Bruskeland G, Akre H, Skatvedt O. Evaluation of a portable recording device (Reggie) with actimeter and nasopharyngeal/esophagus catheter incorporated. Respiration. 2005;72(6):600–5. https://doi.org/10.1159/000086722.

    Article  PubMed  Google Scholar 

  9. Wirth M, Schramm J, Bautz M, Hofauer B, Edenharter G, Ott A, Heiser C. Reduced upper obstructions in N3 and increased lower obstructions in REM sleep stage detected with manometry. Eur Arch Otorhinolaryngol. 2017;275(1):239–45. https://doi.org/10.1007/s00405-017-4746-x.

    Article  PubMed  Google Scholar 

  10. Reda M, Gibson GJ, Wilson JA. Pharyngoesophageal pressure monitoring in sleep apnea syndrome. Otolaryngol Head Neck Surg. 2001;125(4):324–31. https://doi.org/10.1067/mhn.2001.118076.

    Article  CAS  PubMed  Google Scholar 

  11. Chervin RD, Aldrich MS. Effects of esophageal pressure monitoring on sleep architecture. Am J Respir Crit Care Med. 1997;156(3):881–5. https://doi.org/10.1164/ajrccm.156.3.9701021.

    Article  CAS  PubMed  Google Scholar 

  12. Rollheim J, Osnes T, Miljeteig H. The sites of obstruction in OSA, identified by continuous measurements of airway pressure and flow during sleep: ambulatory versus in-hospital recordings. Clin Otolaryngol Allied Sci. 1999;24(6):502–6. https://doi.org/10.1046/j.1365-2273.1999.00301.x.

    Article  CAS  PubMed  Google Scholar 

  13. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8 (5):597-619:597. https://doi.org/10.5664/jcsm.2172.

    Article  Google Scholar 

  14. Olafsson TA, Steinsvik EA, Bachmann-Harildstad G, Hrubos-Strøm H. A validation study of an esophageal probe-based polygraph against polysomnography in obstructive sleep apnea. Sleep Breath. 2021;26(2):575–84. https://doi.org/10.1007/s11325-021-02374-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tvinnereim M, Mitic S, Hansen RK. Plasma radiofrequency preceded by pressure recording enhances success for treating sleep-related breathing disorders. Laryngoscope. 2007;117(4):731–6. https://doi.org/10.1097/MLG.0b013e31803250f0.

    Article  PubMed  Google Scholar 

  16. Hudgel DW, Harasick T, Katz RL, Witt WJ, Abelson TI. Uvulopalatopharyngoplasty in obstructive apnea: value of preoperative localization of site of upper airway narrowing during sleep. Am Rev Respir Dis. 1991;143(5_pt_1):942–5. https://doi.org/10.1164/ajrccm/143.5_Pt_1.942.

    Article  CAS  PubMed  Google Scholar 

  17. Metes A, Hoffstein V, Mateika S, Cole P, Haight JSJ. Site of airway obstruction in patients with obstructive sleep apnea before and after uvulopalatopharyngoplasty. Laryngoscope. 1991;101(10):1102–8. https://doi.org/10.1288/00005537-199110000-00013.

    Article  CAS  PubMed  Google Scholar 

  18. Wirth M, Bautz M, von Meyer F, Hofauer B, Strassen U, Heiser C. Obstruction level associated with outcome in hypoglossal nerve stimulation. Sleep Breath. 2021;26:419. https://doi.org/10.1007/s11325-021-02396-y.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vroegop AV, Vanderveken OM, Verbraecken JA. Drug-induced sleep endoscopy: evaluation of a selection tool for treatment modalities for obstructive sleep apnea. Respiration. 2020;99(5):451–7. https://doi.org/10.1159/000505584.

    Article  PubMed  Google Scholar 

  20. Lee CH, Won TB, Cha W, Yoon IY, Chung S, Kim JW. Obstructive site localization using multisensor manometry versus the Friedman staging system in obstructive sleep apnea. Eur Arch Otorhinolaryngol. 2008;265(2):171–7. https://doi.org/10.1007/s00405-007-0428-4.

    Article  Google Scholar 

  21. Rabelo FAW, Küpper DS, Sander HH, Fernandes RMF, Valera FCP. Polysomnographic evaluation of propofol-induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope. 2013;123(9):2300–5. https://doi.org/10.1002/lary.23664.

    Article  CAS  Google Scholar 

  22. Kim JW, Ahn JC, Choi YS, Rhee CS, Jung HJ. Correlation between short-time and whole-night obstruction level tests for patients with obstructive sleep apnea. Sci Rep. 2021;11(1):1509. https://doi.org/10.1038/s41598-020-80825-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva LC, Herbella FAM, Neves LR, Vicentine FPP, Neto SP, Patti MG. Anatomophysiology of the pharyngo-upper esophageal area in light of high-resolution manometry. J Gastrointest Surg. 2013;17(12):2033–8. https://doi.org/10.1007/s11605-013-2358-3.

    Article  PubMed  Google Scholar 

  24. Azarbarzin A, Marques M, Sands SA, Op de Beeck S, Genta PR, Taranto-Montemurro L, de Melo CM, Messineo L, Vanderveken OM, White DP, Wellman A. Predicting epiglottic collapse in patients with obstructive sleep apnoea. Eur Respir J. 2017;50(3):1700345. https://doi.org/10.1183/13993003.00345-2017.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Genta PR, Sands SA, Butler JP, Loring SH, Katz ES, Demko BG, Kezirian EJ, White DP, Wellman A. Airflow shape is associated with the pharyngeal structure causing OSA. Chest. 2017;152(3):537–46. https://doi.org/10.1016/j.chest.2017.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wirth, M. (2023). Manometry. In: Delakorda, M., de Vries, N. (eds) The Role of Epiglottis in Obstructive Sleep Apnea. Springer, Cham. https://doi.org/10.1007/978-3-031-34992-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34992-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34991-1

  • Online ISBN: 978-3-031-34992-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics