Skip to main content

Clinical Assessment of OSA Patients

  • Chapter
  • First Online:
The Role of Epiglottis in Obstructive Sleep Apnea
  • 71 Accesses

Abstract

While sleep studies are indispensable in the diagnostic process of obstructive sleep apnea patients, clinical examination should not be neglected. Assessment begins with a comprehensive history, including heteroanamnesis provided by the patient’s bed partner. It is important to identify or determine any risk factors and comorbidities, as these can sometimes point toward sleep-disordered breathing. Clinical inspection of the upper airway is important, as it can reveal anatomical structures responsible for the patient’s complaints. Such clinical inspection is the domain of an otolaryngologist, and it requires detailed knowledge of the upper airway’s functional anatomy. Obstruction at the level of the epiglottis cannot yet be reliably predicted without drug-induced sleep endoscopy; however, clinical assessment can provide more information than previously believed. In order to minimize inter-examiner variability, to enable standardized reporting, to improve interpretation, and to allow comparison of research results, a uniform and standardized classification system of upper airway observations should be used. While several proposals have been put forth in recent publications, a widely accepted grading system for the laryngeal status has not yet been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckert DJ, Malhotra A, Jordan AS. Mechanisms of apnea. Prog Cardiovasc Dis. 2009 [cited 2020 Feb 11];51(4):313–23. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3427748.

  2. Weaver TE, Sawyer A. Management of obstructive sleep apnea by continuous positive airway pressure. Oral Maxillofac Surg Clin North Am. 2009 [cited 2020 Feb 23];21(4):403–12. http://www.ncbi.nlm.nih.gov/pubmed/19944340.

  3. Weaver TE, Grunstein RR. Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc. 2008 [cited 2020 March 3];5(2):173–8. http://www.ncbi.nlm.nih.gov/pubmed/18250209.

  4. Weaver TE, Maislin G, Dinges DF, Bloxham T, George CFP, Greenberg H, et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007 [cited 2020 Feb 23];30(6):711–9. http://www.ncbi.nlm.nih.gov/pubmed/17580592.

  5. Rotenberg BW, Murariu D, Pang KP. Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolaryngol Head Neck Surg. 2016 [cited 2021 Aug 2];45(1):43. http://www.ncbi.nlm.nih.gov/pubmed/27542595.

  6. Zinchuk A, Yaggi HK. Phenotypic subtypes of OSA: a challenge and opportunity for precision medicine. Chest. 2020 [cited 2021 Jun 25];157(2):403–20. http://www.ncbi.nlm.nih.gov/pubmed/31539538.

  7. Rotenberg BW, Theriault J, Gottesman S. Redefining the timing of surgery for obstructive sleep apnea in anatomically favorable patients. Laryngoscope. 2014 [cited 2020 Feb 23];124 Suppl:1–9. http://doi.wiley.com/10.1002/lary.24720.

  8. Friedman M, Ibrahim H, Bass L. Clinical staging for sleep-disordered breathing. Otolaryngol Head Neck Surg. 2002 [cited 2020 Feb 22];127(1):13–21. http://journals.sagepub.com/doi/10.1067/mhn.2002.126477.

  9. Torre C, Zaghi S, Camacho M, Capasso R, Liu SY. Hypopharyngeal evaluation in obstructive sleep apnea with awake flexible laryngoscopy: Validation and updates to Cormack-Lehane and Modified Cormack-Lehane scoring systems. Clin Otolaryngol. 2018 [cited 2020 Feb 18];43(3):823–7. http://doi.wiley.com/10.1111/coa.13054.

  10. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017 [cited 2020 March 10];13(3):479–504. http://www.ncbi.nlm.nih.gov/pubmed/28162150.

  11. Pang KP, Oto F, Terris DJ, Podolsky R. Severity of obstructive sleep apnea: correlation with clinical examination and patient perception. Otolaryngol Head Neck Surg. 2006;135:555–60.

    Article  PubMed  Google Scholar 

  12. Johns MW. A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep. 1991;14(6):540–5. https://pubmed.ncbi.nlm.nih.gov/1798888/.

  13. Grewe FA, Roeder M, Bradicich M, Schwarz EI, Held U, Thiel S, et al. Low repeatability of Epworth Sleepiness Scale after short intervals in a sleep clinic population. J Clin Sleep Med. 2020 [cited 2021 Nov 14];16(5):757–64. http://www.ncbi.nlm.nih.gov/pubmed/32039756.

  14. Lee SJ, Kang HW, Lee LH. The relationship between the Epworth Sleepiness Scale and polysomnographic parameters in obstructive sleep apnea patients. Eur Arch Otorhinolaryngol. 2012;269(4):1143–7. https://pubmed.ncbi.nlm.nih.gov/22037721/.

  15. Ulasli SS, Gunay E, Koyuncu T, Akar O, Halici B, Ulu S, et al. Predictive value of Berlin Questionnaire and Epworth Sleepiness Scale for obstructive sleep apnea in a sleep clinic population. Clin Respir J. 2014;8(3):292–6.

    Article  Google Scholar 

  16. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. https://pubmed.ncbi.nlm.nih.gov/2748771/.

    Article  CAS  PubMed  Google Scholar 

  17. Scarlata S, Pedone C, Curcio G, Cortese L, Chiurco D, Fontana D, et al. Pre-polysomnographic assessment using the Pittsburgh Sleep Quality Index questionnaire is not useful in identifying people at higher risk for obstructive sleep apnea. J Med Screen. 2013;20(4):220–6.

    Article  PubMed  Google Scholar 

  18. Nishiyama T, Mizuno T, Kojima M, Suzuki S, Kitajima T, Ando KB, et al. Criterion validity of the Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale for the diagnosis of sleep disorders. Sleep Med. 2014;15(4):422–9. https://pubmed.ncbi.nlm.nih.gov/24657203/.

    Article  PubMed  Google Scholar 

  19. Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology. 2008;108(5):812–21. https://pubmed.ncbi.nlm.nih.gov/18431116/.

    Article  PubMed  Google Scholar 

  20. Nagappa M, Liao P, Wong J, Auckley D, Ramachandran SK, Memtsoudis S, et al. Validation of the stop-bang questionnaire as a screening tool for obstructive sleep apnea among different populations: a systematic review and meta-analysis. PLoS One. 2015;10(12):e0143697.

    Article  PubMed Central  Google Scholar 

  21. Chen L, Pivetta B, Nagappa M, Saripella A, Islam S, Englesakis M, et al. Validation of the STOP-Bang questionnaire for screening of obstructive sleep apnea in the general population and commercial drivers: a systematic review and meta-analysis. Sleep Breath. 2021;25(4):1741. https://pubmed.ncbi.nlm.nih.gov/33507478/.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bonsignore MR, Baiamonte P, Mazzuca E, Castrogiovanni A, Marrone O. Obstructive sleep apnea and comorbidities: a dangerous liaison. Multidiscip Respir Med. 2019 [cited 2021 Nov 14];14(1):8. https://pubmed.ncbi.nlm.nih.gov/30809382/.

  23. Garg H. Sleep history taking and examination. Int J Head Neck Surg. 2019;10(1):9–17. https://creativecommons.

    Article  Google Scholar 

  24. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993 [cited 2020 Feb 8];328(17):1230–5. http://www.ncbi.nlm.nih.gov/pubmed/8464434.

  25. Phua CQ, Yeo WX, Su C, Mok PKH. Multi-level obstruction in obstructive sleep apnoea: prevalence, severity and predictive factors. J Laryngol Otol. 2017;131(11):982–6.

    Article  CAS  PubMed  Google Scholar 

  26. Newman AB, Foster G, Givelber R, Nieto FJ, Redline S, Young T. Progression and regression of sleep-disordered breathing with changes in weight. Arch Intern Med. 2005 [cited 2020 Feb 6];165(20):2408. http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.165.20.2408.

  27. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000 [cited 2020 Feb 6];284(23):3015. http://www.ncbi.nlm.nih.gov/pubmed/11122588.

  28. Nashi N, Kang S, Barkdull GC, Lucas J, Davidson TM. Lingual fat at autopsy. Laryngoscope. 2007;117(8):1467–73.

    Article  Google Scholar 

  29. Sung CM, Tan SN, Shin M-H, Lee J, Kim HC, Lim SC, et al. The site of airway collapse in sleep apnea, its associations with disease severity and obesity, and implications for mechanical interventions. Am J Respir Crit Care Med. 2021 [cited 2021 Dec 1];204(1):103–6. http://www.ncbi.nlm.nih.gov/pubmed/33826879.

  30. Sung CM, Kim HC, Yang HC. The clinical characteristics of patients with an isolate epiglottic collapse. Auris Nasus Larynx. 2020;47(3):450–7.

    Article  PubMed  Google Scholar 

  31. Kim HY, Sung CM, Bin JH, Kim HC, Lim SC, Yang HC. Patients with epiglottic collapse showed less severe obstructive sleep apnea and good response to treatment other than continuous positive airway pressure: a case-control study of 224 patients. J Clin Sleep Med. 2021;17(3):413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kuo I-C, Hsin L-J, Lee L-A, Fang T-J, Tsai M-S, Lee Y-C, et al. Prediction of epiglottic collapse in obstructive sleep apnea patients: epiglottic length. Nat Sci Sleep. 2021 [cited 2021 Nov 26];13:1985–92. http://www.ncbi.nlm.nih.gov/pubmed/34764713.

  33. Franklin KA, Sahlin C, Stenlund H, Lindberg E. Sleep apnoea is a common occurrence in females. Eur Respir J. 2013;41(3):610–5. https://pubmed.ncbi.nlm.nih.gov/22903961/.

    Article  PubMed  Google Scholar 

  34. Young T. The occurrence of sleep disordered brething among middle aged adults. 1993 [cited 2019 March 21]. https://ssl.sb-celje.si/doi/pdf/10.1056/,DanaInfo=www.nejm.org,SSL+NEJM199304293281704.

  35. Quintana-Gallego E, Carmona-Bernal C, Capote F, Sánchez-Armengol Á, Botebol-Benhamou G, Polo-Padillo J, et al. Gender differences in obstructive sleep apnea syndrome: a clinical study of 1166 patients. Respir Med. 2004;98(10):984–9. https://pubmed.ncbi.nlm.nih.gov/15481275/.

    Article  PubMed  Google Scholar 

  36. Lin CM, Davidson TM, Ancoli-Israel S. Gender differences in obstructive sleep apnea and treatment implications. Sleep Med Rev. 2008;12(6):481–96. /pmc/articles/PMC2642982/.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ryan CM, Bradley TD. Pathogenesis of obstructive sleep apnea. J Appl Physiol. 2005;99(6):2440–50. https://pubmed.ncbi.nlm.nih.gov/16288102/.

    Article  PubMed  Google Scholar 

  38. Young T, Hutton R, Finn L, Badr S, Palta M. The gender bias in sleep apnea diagnosis. Are women missed because they have different symptoms? Arch Intern Med. 1996;156(21):2445.

    Article  CAS  PubMed  Google Scholar 

  39. Whittle AT, Marshall I, Mortimore IL, Wraith PK, Sellar RJ, Douglas NJ. Neck soft tissue and fat distribution: comparison between normal men and women by magnetic resonance imaging. Thorax. 1999 [cited 2020 March 22];54(4):323–8. http://thorax.bmj.com/cgi/doi/10.1136/thx.54.4.323.

  40. Ma MA, Kumar R, Macey PM, Yan-Go FL, Harper RM. Epiglottis cross-sectional area and oropharyngeal airway length in male and female obstructive sleep apnea patients. Nat Sci Sleep. 2016 [cited 2021 Aug 9];8:297–304. https://pubmed.ncbi.nlm.nih.gov/27757056/.

  41. Sung C-W, Chan W, Chang C-H, Huang P-C, Lien W-C, Chang W-T, et al. Associations between male gender, body size and dimension of the epiglottis. Authorea Prepr; 2020.

    Google Scholar 

  42. Zhao C, Viana A, Ma Y, Capasso R. The effect of aging on drug-induced sleep endoscopy findings. Laryngoscope. 2018 [cited 2019 Nov 27];128(11):2644. http://doi.wiley.com/10.1002/lary.27265.

  43. Irvine LE, Yang Z, Kezirian EJ, Nimni ME, Han B. Hyoepiglottic ligament collagen and elastin fiber composition and changes associated with aging. Laryngoscope. 2018;128(5):1245–8. https://pubmed.ncbi.nlm.nih.gov/29330863/.

    Article  CAS  PubMed  Google Scholar 

  44. Sawatsubashi M, Umezaki T, Kusano K, Tokunaga O, Oda M, Komune S. Age-related changes in the hyoepiglottic ligament: functional implications based on histopathologic study. Am J Otolaryngol Head Neck Med Surg. 2010;31(6):448–52. https://linkinghub.elsevier.com/retrieve/pii/S019607090900163X.

    Google Scholar 

  45. Saboisky JP, Stashuk DW, Hamilton-Wright A, Trinder J, Nandedkar S, Malhotra A. Effects of aging on genioglossus motor units in humans. PLoS One. 2014 [cited 2021 Jun 21];9(8):e104572. http://www.ncbi.nlm.nih.gov/pubmed/25111799.

  46. Jamieson A, Guilleminault C, Partinen M, Quera-Salva MA. Obstructive sleep apneic patients have craniomandibular abnormalities. Sleep. 1987;9(4):469.

    Article  Google Scholar 

  47. Tangugsorn V, Krogstad O, Espeland L, Lyberg T. Obstructive sleep apnoea: multiple comparisons of cephalometric variables of obese and non-obese patients. J Craniomaxillofac Surg. 2000 [cited 2021 Nov 16];28(4):204–12. http://www.ncbi.nlm.nih.gov/pubmed/11110151.

  48. Bacon WH, Turlot JC, Krieger J, Stierle JL. Cephalometric evaluation of pharyngeal obstructive factors in patients with sleep apneas syndrome. Angle Orthod. 1990;60(2):115.

    CAS  PubMed  Google Scholar 

  49. Cistulli PA. Craniofacial abnormalities in obstructive sleep apnoea: implications for treatment. Respirology. 1996;1(3):167.

    Article  CAS  PubMed  Google Scholar 

  50. Lowe AA, Santamaria JD, Fleetham JA, Price C. Facial morphology and obstructive sleep apnea. Am J Orthod Dentofacial Orthop. 1986;90(6):484–91. https://pubmed.ncbi.nlm.nih.gov/3098087/.

    Article  CAS  Google Scholar 

  51. Neelapu BC, Kharbanda OP, Sardana HK, Balachandran R, Sardana V, Kapoor P, et al. Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: a systematic review and meta-analysis of cephalometric studies. Sleep Med Rev. 2017;31:79.

    Google Scholar 

  52. Seto BH, Gotsopoulos H, Sims MR, Cistulli PA. Maxillary morphology in obstructive sleep apnoea syndrome. Eur J Orthod. 2001;23(6):703–14.

    Article  CAS  PubMed  Google Scholar 

  53. Aktas O, Erdur O, Cirik AA, Kayhan FT. The role of drug-induced sleep endoscopy in surgical planning for obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol. 2015 [cited 2019 Feb 14];272(8):2039–43. http://link.springer.com/10.1007/s00405-014-3162-8.

  54. Launois SH, Feroah TR, Campbell WN, Issa FG, Morrison D, Whitelaw WA, et al. Site of pharyngeal narrowing predicts outcome of surgery for obstructive sleep apnea. Am Rev Respir Dis. 1993 [cited 2021 Dec 26];147(1):182–9. http://www.ncbi.nlm.nih.gov/pubmed/8420415.

  55. Vanderveken OM, Maurer JT, Hohenhorst W, Hamans E, Lin HS, Vroegop AV, et al. Evaluation of drug-induced sleep endoscopy as a patient selection tool for implanted upper airway stimulation for obstructive sleep apnea. J Clin Sleep Med. 2013;9(5):433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ravesloot MJL, de Vries N. One hundred consecutive patients undergoing drug-induced sleep endoscopy: results and evaluation. Laryngoscope. 2011 [cited 2019 Apr 24];121(12):2710–6. http://doi.wiley.com/10.1002/lary.22369.

  57. Abdullah VJ, van Hasselt CA. Video sleep nasendoscopy. In: Terris DJGR, editor. Surgical management of sleep apnea and snoring. Boca Raton: Taylor and Francis; 2005. p. 143–54.

    Chapter  Google Scholar 

  58. Riley RW, Powell NB, Guilleminault C. Obstructive sleep apnea syndrome: a review of 306 consecutively treated surgical patients. Otolaryngol Neck Surg. 1993 [cited 2020 March 9];108(2):117–25. http://www.ncbi.nlm.nih.gov/pubmed/8441535.

  59. Woodson BT, Wooten MR. Comparison of upper-airway evaluations during wakefulness and sleep. Laryngoscope. 1994 [cited 2020 Feb 6];104(7):821–8. http://www.ncbi.nlm.nih.gov/pubmed/8022243.

  60. Campanini A, Canzi P, De Vito A, Dallan I, Montevecchi F, Vicini C. Awake versus sleep endoscopy: personal experience in 250 OSAHS patients. Acta Otorhinolaryngol Ital. 2010 [cited 2020 March 20];30(2):73–7. http://www.ncbi.nlm.nih.gov/pubmed/20559476.

  61. Borowiecki BD, Sassin JF. Surgical treatment of sleep apnea. Arch Otolaryngol. 1983;109(8):508–12. http://www.ncbi.nlm.nih.gov/pubmed/6870642.

    Article  CAS  PubMed  Google Scholar 

  62. Stuck BA, Maurer J. The Mueller maneuver. In: Friedman M, Jacobowitz O, editors. Sleep apnea and snoring. Amsterdam: Elsevier; 2020. p. 13–22.

    Chapter  Google Scholar 

  63. Soares MCM, Sallum ACR, Gonçalves MTM, Haddad FLM, Gregório LC. Utilização da manobra de Müller na avaliação de pacientes apnéicos: Revisão da literatura. Braz J Otorhinolaryngol. 2009;75(3):463–6.

    Article  Google Scholar 

  64. EF Haponik, PL Smith, ME Bohlman, RP Allen, SM Goldman, ER Bleecker. Computerized tomography in obstructive sleep apnea. Correlation of airway size with physiology during sleep and wakefulness. Am Rev Respir Dis. 1983;127(2):221–6. https://doi.org/10.1164/arrd.1983.127.2.221.

  65. Genta PR, Sands SA, Butler JP, Loring SH, Katz ES, Demko BG, et al. Airflow shape is associated with the pharyngeal structure causing OSA. Chest. 2017 [cited 2019 March 29];152(3):537–46. http://www.ncbi.nlm.nih.gov/pubmed/28651794.

  66. Azarbarzin A, Marques M, Sands SA, Op de Beeck S, Genta PR, Taranto-Montemurro L, et al. Predicting epiglottic collapse in patients with obstructive sleep apnoea. Eur Respir J. 2017 [cited 2021 Jul 13];50(3):1700345. https://doi.org/10.1183/13993003.00345.

  67. Isono S. Two valves in the pharynx. Eur Respir J. 2017;50(3):7–9. https://doi.org/10.1183/13993003.01496-2017.

    Article  Google Scholar 

  68. Yanagisawa-Minami A, Sugiyama T, Iwasaki T, Yamasaki Y. Primary site identification in children with obstructive sleep apnea by computational fluid dynamics analysis of the upper airway. J Clin Sleep Med. 2020 [cited 2021 Jun 27];16(3):431–439. http://www.ncbi.nlm.nih.gov/pubmed/31992411.

  69. Green KK, Kent DT, D’Agostino MA, Hoff PT, Lin HS, Soose RJ, et al. Drug-induced sleep endoscopy and surgical outcomes: a multicenter cohort study. Laryngoscope. 2019;129(3):761.

    Article  CAS  PubMed  Google Scholar 

  70. Kwon OE, Jung SY, Al-Dilaijan K, Min JY, Lee KH, Kim SW, et al. Is epiglottis surgery necessary for obstructive sleep apnea patients with epiglottis obstruction? Laryngoscope. 2019 [cited 2019 Nov 20];129(11):2658–62. https://onlinelibrary.wiley.com/doi/abs/10.1002/lary.27808.

  71. Steinhart H, Kuhn-Lohmann J, Gewalt K, Constantinidis J, Mertzlufft F, Iro H. Upper airway collapsibility in habitual snorers and sleep apneics: evaluation with drug-induced sleep endoscopy. Acta Otolaryngol. 2000 [cited 2020 Apr 10];120(8):990–4. http://www.tandfonline.com/doi/full/10.1080/00016480050218753.

  72. Kellner P, Herzog B, Plößl S, Rohrmeier C, Kühnel T, Wanzek R, et al. Depth-dependent changes of obstruction patterns under increasing sedation during drug-induced sedation endoscopy: results of a German monocentric clinical trial. Sleep Breath. 2016 [cited 2019 Sep 29];20(3):1035–43. https://ssl.sb-celje.si/content/pdf/,DanaInfo=link.springer.com,SSL+10.1007%2Fs11325-016-1348-6.pdf.

  73. Fernández-Julián E, García-Pérez MÁ, García-Callejo J, Ferrer F, Martí F, Marco J. Surgical planning after sleep versus awake techniques in patients with obstructive sleep apnea. Laryngoscope. 2014;124(8):1970–4.

    Article  PubMed  Google Scholar 

  74. Eichler C, Sommer JU, Stuck BA, Hörmann K, Maurer JT. Does drug-induced sleep endoscopy change the treatment concept of patients with snoring and obstructive sleep apnea? Sleep Breath. 2013 [cited 2020 Feb 18];17(1):63–8. http://link.springer.com/10.1007/s11325-012-0647-9.

  75. Friedman M, Tanyeri H, Lim JW, Landsberg R, Vaidyanathan K, Caldarelli D. Effect of improved nasal breathing on obstructive sleep apnea. Otolaryngol Head Neck Surg. 2000 [cited 2020 March 1];122(1):71–4. http://journals.sagepub.com/doi/10.1016/S0194-5998%2800%2970147-1.

  76. Sériès F, St Pierre S, Carrier G. Effects of surgical correction of nasal obstruction in the treatment of obstructive sleep apnea. Am Rev Respir Dis. 1992 [cited 2020 March 15];146(5 Pt 1):1261–5. http://www.atsjournals.org/doi/abs/10.1164/ajrccm/146.5_Pt_1.1261.

  77. Victores AJ, Takashima M. Effects of nasal surgery on the upper airway: a drug-induced sleep endoscopy study. Laryngoscope. 2012 [cited 2020 March 15];122(11):2606–10. http://www.ncbi.nlm.nih.gov/pubmed/22886986.

  78. Li HY, Wang PC, Chen YP, Lee LA, Fang TJ, Lin HC. Critical appraisal and meta-analysis of nasal surgery for obstructive sleep apnea. Am J Rhinol Allergy. 2011 [cited 2020 March 31];25(1):45–9. http://www.ncbi.nlm.nih.gov/pubmed/21711978.

  79. Stewart MG, Witsell DL, Smith TL, Weaver EM, Yueh B, Hannley MT. Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol Head Neck Surg. 2004;130(2):157–63. https://pubmed.ncbi.nlm.nih.gov/14990910/.

    Article  PubMed  Google Scholar 

  80. Ishii L, Godoy A, Ishman SL, Gourin CG, Ishii M. The nasal obstruction symptom evaluation survey as a screening tool for obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2011;137(2):119–23. https://pubmed.ncbi.nlm.nih.gov/21339396/.

    Article  PubMed  Google Scholar 

  81. Roithmann R, Demeneghi P, Faggiano R, Cury A. Effects of posture change on nasal patency. Braz J Otorhinolaryngol. 2005;71(4):478–84. https://pubmed.ncbi.nlm.nih.gov/16446964/.

    Article  PubMed  Google Scholar 

  82. Miles PG, Vig PS, Weyant RJ, Forrest TD, Rockette HE. Craniofacial structure and obstructive sleep apnea syndrome--a qualitative analysis and meta-analysis of the literature. Am J Orthod Dentofacial Orthop. 1996 [cited 2021 Nov 16];109(2):163–72. http://www.ncbi.nlm.nih.gov/pubmed/8638562.

  83. Martynowicz H, Gac P, Brzecka A, Poreba R, Wojakowska A, Mazur G, et al. The relationship between sleep bruxism and obstructive sleep apnea based on polysomnographic findings. J Clin Med. 2019;8(10):1653. https://pubmed.ncbi.nlm.nih.gov/31614526/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muto T, Yamazaki A, Takeda S. A cephalometric evaluation of the pharyngeal airway space in patients with mandibular retrognathia and prognathia, and normal subjects. Int J Oral Maxillofac Surg. 2008;37(3):228–31. https://pubmed.ncbi.nlm.nih.gov/18296029/.

    Article  CAS  PubMed  Google Scholar 

  85. El H, Palomo JM. Airway volume for different dentofacial skeletal patterns. Am J Orthod Dentofacial Orthop. 2011;139(6):e511. https://pubmed.ncbi.nlm.nih.gov/21640863/.

    Article  PubMed  Google Scholar 

  86. Weiss TM, Atanasov S, Calhoun KH. The association of tongue scalloping with obstructive sleep apnea and related sleep pathology. Otolaryngol Head Neck Surg. 2005;133(6):966–71.

    Article  PubMed  Google Scholar 

  87. Jacobowitz O. Advances in oral appliances for obstructive sleep apnea. Adv Otorhinolaryngol. 2017;80:57–65. https://pubmed.ncbi.nlm.nih.gov/28738372/.

    PubMed  Google Scholar 

  88. Salamanca F, Leone F, Bianchi A, Bellotto RGS, Costantini F, Salvatori P. Surgical treatment of epiglottis collapse in obstructive sleep apnoea syndrome: epiglottis stiffening operation. Acta Otorhinolaryngol Ital 2019 [cited 2020 Feb 12];39(6):404. http://www.ncbi.nlm.nih.gov/pubmed/31950932.

  89. Ardran GM, Kemp FH. The mechanism of the larynx. II. The epiglottis and closure of the larynx. Br J Radiol. 1967;40(473):372–89.

    Article  CAS  PubMed  Google Scholar 

  90. Tucker WB. A method to describe the pharyngeal airway. Laryngoscope. 2015;125(5):1233–8.

    Article  Google Scholar 

  91. Schwab RJ, Remmers JE, Kuna ST, Remmers JE. Anatomy and physiology of upper airway obstruction. In: Kryger MH, Roth TDW, editors. Principles and practice of sleep medicine: fifth edition. 5th ed. Philadelphia: Elsevier Saunders; 2010. p. 983–1000. https://doi.org/10.1016/B978-1-4160-6645-3.00101-8.

    Chapter  Google Scholar 

  92. Isono S, Tanaka A, Tagaito Y, Ishikawa T, Nishino T. Influences of head positions and bite opening on collapsibility of the passive pharynx. J Appl Physiol. 2004 [cited 2021 Aug 3];97(1):339–46. http://www.jap.org.

  93. Bonzelaar LB, Salapatas AM, Hwang MS, Andrews CC, Price NY, Friedman M. The effect of oral positioning on the hypopharyngeal airway. Laryngoscope. 2017 [cited 2021 Dec 12];127(6):1471–5. http://www.ncbi.nlm.nih.gov/pubmed/27686476.

  94. Fujita S. Pharyngeal surgery for obstructive sleep apnea and snoring. In: Fairbanks DNF, editor. Snoring and obstructive sleep apnea. New York: Raven Press; 1987. p. 101–28.

    Google Scholar 

  95. Mallampati SR. Clinical sign to predict difficult tracheal intubation (hypothesis). Can Anaesth Soc J. 1983;30(3 Pt 1):316–7. https://pubmed.ncbi.nlm.nih.gov/6336553/.

    Article  CAS  PubMed  Google Scholar 

  96. Friedman M, Salapatas AM, Bonzelaar LB. Updated Friedman Staging System for obstructive sleep apnea. Adv Otorhinolaryngol. 2017 [cited 2020 Feb 22];80:41–8. https://pubmed.ncbi.nlm.nih.gov/28738388/.

  97. Sung MW, Lee WH, Wee JH, Lee CH, Kim E, Kim JW. Factors associated with hypertrophy of the lingual tonsils in adults with sleep-disordered breathing. JAMA Otolaryngol Head Neck Surg. 2013;139(6):598–603. https://pubmed.ncbi.nlm.nih.gov/23787418/.

    Article  PubMed  Google Scholar 

  98. Friedman M, Yalamanchali S, Gorelick G, Joseph NJ, Hwang MS. A standardized lingual tonsil grading system: interexaminer agreement. Otolaryngol Head Neck Surg. 2015;152(4):667–72. https://pubmed.ncbi.nlm.nih.gov/25628371/.

    Article  PubMed  Google Scholar 

  99. Friedman M, Tanyeri H, La Rosa M, Landsberg R, Vaidyanathan K, Pieri S, et al. Clinical predictors of obstructive sleep apnea. Laryngoscope. 1999 [cited 2020 Feb 21];109(12):1901–7. http://www.ncbi.nlm.nih.gov/pubmed/10591345.

  100. Yahagi N, Kono M, Kitahara M, Watanabe K, Fujiwara Y, Asakawa Y, et al. Causes of airway obstruction during cuffed oropharyngeal airway use. Resuscitation. 2001;48(3):275–8.

    Article  CAS  Google Scholar 

  101. Shorten GD, Ali HH, Roberts JT. Assessment of patient position for fiberoptic intubation using videolaryngoscopy. J Clin Anesth. 1995;7(1):31–4.

    Article  CAS  Google Scholar 

  102. Cormack RS, Lehane J. Difficult tracheal intubation in obstetrics. Anaesthesia. 1984 [cited 2020 Feb 22];39(11):1105–11. http://www.ncbi.nlm.nih.gov/pubmed/6507827.

  103. Yentis SM, Lee DJ. Evaluation of an improved scoring system for the grading of direct laryngoscopy. Anaesthesia. 1998 [cited 2021 Nov 11];53(11):1041–1044. http://www.ncbi.nlm.nih.gov/pubmed/10023271.

  104. Nowakowski M, Williams S, Gallant J, Ruel M, Robitaille A. Predictors of difficult intubation with the Bonfils Rigid Fiberscope. Anesth Analg. 2016 [cited 2021 Nov 2];122(6):1901–6. http://www.ncbi.nlm.nih.gov/pubmed/27028774.

  105. Krage R, van Rijn C, Van Groeningen D, Loer SA, Schwarte LA, Schober P. Cormack-Lehane classification revisited. Br J Anaesth. 2010 [cited 2020 Feb 22];105(2):220–7. http://justus.randolph.name/kappa.

  106. Ambesh SP, Singh N, Rao PB, Gupta D, Singh PK, Singh U. A combination of the modified Mallampati score, thyromental distance, anatomical abnormality, and cervical mobility (M-TAC) predicts difficult laryngoscopy better than Mallampati classification. Acta Anaesthesiol Taiwan. 2013 [cited 2021 Nov 16];51(2):58–62. http://www.ncbi.nlm.nih.gov/pubmed/23968655.

  107. Uzun L, Ugur MB, Altunkaya H, Ozer Y, Ozkocak I, Demirel CB. Effectiveness of the jaw-thrust maneuver in opening the airway: a flexible fiberoptic endoscopic study. ORL Otorhinolarngol Relat Spec. 2005;67(1):39–44.

    Article  Google Scholar 

  108. Hiremath AS, Hillman DR, James AL, Noffsinger WJ, Platt PR, Singer SL. Relationship between difficult tracheal intubation and obstructive sleep apnoea. Br J Anaesth. 1998 [cited 2021 Nov 17];80(5):606–11. http://www.ncbi.nlm.nih.gov/pubmed/9691863.

  109. Yamashiro Y, Kryger M. Is laryngeal descent associated with increased risk for obstructive sleep apnea? Chest. 2012;141(6):1407–13. https://doi.org/10.1378/chest.10-3238.

    Article  PubMed  Google Scholar 

  110. Bolzer A, Toussaint B, Rumeau C, Gallet P, Jankowski R, Nguyen DT. Can anatomical assessment of hypopharyngolarynx in awake patients predict obstructive sleep apnea? Laryngoscope. 2019;129(12):2782–8.

    Article  PubMed  Google Scholar 

  111. Kezirian EJ, White DP, Malhotra A, Ma W, McCulloch CE, Goldberg AN. Interrater reliability of drug-induced sleep endoscopy. Arch Otolaryngol Head Neck Surg. 2010;136(4):393–7.

    Article  PubMed  Google Scholar 

  112. Moore KE, Phillips C. A practical method for describing patterns of tongue-base narrowing (modification of Fujita) in awake adult patients with obstructive sleep apnea. J Oral Maxillofac Surg. 2002;60(3):252–60.

    Article  PubMed  Google Scholar 

  113. Solomons NB, Prescott CAJ, Laryngomalacia. A review and the surgical management for severe cases. Int J Pediatr Otorhinolaryngol. 1987;13(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  114. Janfaza P, Nadol JB, Galla R, Fabian RL, Montgomery WW. Surgical anatomy of the head and neck. Cambridge: Harvard University Press; 2011. p. xi–xii. http://www.jstor.org/stable/10.2307/j.ctvjf9vjb.4.

    Book  Google Scholar 

  115. Li S, Wu D, Jie Q, Bao J, Shi H. Lingua-epiglottis position predicts glossopharyngeal obstruction in patients with obstructive sleep apnea hypopnea syndrome. Eur Arch Otorhinolaryngol. 2014;271(10):2737–43.

    Article  PubMed  Google Scholar 

  116. Delakorda M, Ovsenik N. Epiglottis shape as a predictor of obstruction level in patients with sleep apnea. Sleep Breath. 2019;23(1):311–7. http://www.ncbi.nlm.nih.gov/pubmed/30506267.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delakorda, M., Maver, B. (2023). Clinical Assessment of OSA Patients. In: Delakorda, M., de Vries, N. (eds) The Role of Epiglottis in Obstructive Sleep Apnea. Springer, Cham. https://doi.org/10.1007/978-3-031-34992-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34992-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34991-1

  • Online ISBN: 978-3-031-34992-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics