Skip to main content

The Coherent Multi-representation Problem with Applications in Structural Biology

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13919))

Abstract

We introduce the Coherent Multi-representation Problem (CMP), whose solutions allow us to observe simultaneously different geometrical representations for the vertices of a given simple graph. The idea of graph multi-representation extends the common concept of graph embedding, where every vertex can be embedded in a domain that is unique for each of them. In the CMP, the same vertex can instead be represented in multiple ways, and the main aim is to find a general multi-representation where all the involved variables are “coherent” with one another. We prove that the CMP extends a geometrical problem known in the literature as the distance geometry problem, and we show a preliminary computational experiment on a protein-like instance, which is performed with a new Java implementation specifically conceived for graph multi-representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mucherino/DistanceGeometry, commit be4e33b, folder javaCMP.

References

  1. Ainsworth, S.: DeFT: a conceptual framework for considering learning with multiple representations. Learn. Instr. 16(3), 183–198 (2006)

    Article  Google Scholar 

  2. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2(2), 188–220 (2006)

    Article  Google Scholar 

  3. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, Hoboken (1988)

    Google Scholar 

  4. Dokmanić, I., Parhizkar, R., Walther, A., Lu, Y.M., Vetterli, M.: Acoustic echoes reveal room shape. Proc. Natl. Acad. Sci. 110(30), 12186–12191 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dümbgen, F., Hoffet, A., Kolundzija, M., Scholefield, A., Vetterli, M.: Blind as a bat: audible echolocation on small robots. IEEE Robot. Autom. Lett. 8(3), 1271–1278 (2023)

    Article  Google Scholar 

  6. Gonçalves, D.S., Mucherino, A.: Optimal partial discretization orders for discretizable distance geometry. Int. Trans. Oper. Res. 23(5), 947–967 (2016)

    Article  Google Scholar 

  7. Hengeveld, S.B., Malliavin, T., Liberti, L., Mucherino, A.: Collecting data for generating distance geometry graphs for protein structure determination. In: Proceedings of ROADEF23, Rennes, France, 2 p. (2023)

    Google Scholar 

  8. Hengeveld, S.B., Plastria, F., Mucherino, A., Pelta, D.A.: A linear program for points of interest relocation in adaptive maps. In: Geometric Science of Information (GSI 2023). LNCS (2023, to appear)

    Google Scholar 

  9. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)

    Article  Google Scholar 

  10. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  Google Scholar 

  11. Malliavin, T.E., Mucherino, A., Lavor, C., Liberti, L.: Systematic exploration of protein conformational space using a distance geometry approach. J. Chem. Inf. Model. 59(10), 4486–4503 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives. In: [15], pp. 329–350. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0_16

  13. Mao, G., Fidan, B., Anderson, B.D.: Wireless sensor network localization techniques. Comput. Netw. 51(10), 2529–2553 (2007)

    Article  Google Scholar 

  14. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)

    Article  Google Scholar 

  15. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and Applications. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0

    Book  Google Scholar 

  16. Mucherino, A., Lin, J.-H., Gonçalves, D.S.: A coarse-grained representation for discretizable distance geometry with interval data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds.) IWBBIO 2019. LNCS, vol. 11465, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17938-0_1

    Chapter  Google Scholar 

  17. Mucherino, A., Omer, J., Hoyet, L., Robuffo Giordano, P., Multon, F.: An application-based characterization of dynamical distance geometry problems. Optim. Lett. 14(2), 493–507 (2020)

    Article  Google Scholar 

  18. Omer, J., Mucherino, A.: The referenced vertex ordering problem: theory, applications and solution methods. Open J. Math. Optim. 2, 1–29 (2021). Article No. 6

    Article  Google Scholar 

  19. Seufert, T.: Supporting coherence formation in learning from multiple representations. Learn. Instr. 13(2), 227–237 (2003)

    Article  Google Scholar 

  20. Zhou, S., Jones, C.B.: A multi-representation spatial data model. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 394–411. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45072-6_23

    Chapter  Google Scholar 

Download references

Acknowledgments

We wish to thank the three reviewers for their fruitful comments. This work is partially supported by ANR French funding agency (multiBioStruct project ANR-19-CE45-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mucherino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mucherino, A. (2023). The Coherent Multi-representation Problem with Applications in Structural Biology. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics