Skip to main content

Performance Improvement with Optimization Algorithm in Isolating Left Ventricle and Non-Left Ventricle Cardiac

  • Chapter
  • First Online:
Intelligent Multimedia Signal Processing for Smart Ecosystems

Abstract

Magnetic Resonance Imaging (MRI) typically shows the overall heart anatomy and usually includes the outmost slices of the left ventricle coverage. In assessing the patient in the left ventricle (LV) cardiac segment, only slices with images of the LV cardiac segment are considered, and the rest is neglected. This chapter explores an automated approach to classifying LV and Non-LV segments in cardiac MR images by utilizing a deep convolutional neural network. The dataset used is the STACOM2012 public dataset, which consists of 398 short-axis images of cardiac LGE-MRI. A deep convolution network model designed from scratch and three deep transfer learning models (AlexNet, GoogleNet and SqueezeNet) were trained on 80% of the images and validated on the remaining 20% of the images after the data augmentation process for a comparative analysis using three different optimization algorithms (ADAM, SGDM and RMSprop). Then, all networks were tested on cardiac LGE-MRI collected from Advanced Medical and Dental Institute (AMDI) USM database. The outcome demonstrated that Adam was the best network optimizer, with an accuracy improvement of 0.3–1.1% over SGDM. The GoogleNet model outperformed other models with an accuracy performance of 97.54% and a macro F1-score of 0.9080 when tested with the STACOM2012 and AMDI datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho N, Kim YC (2021) Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-81525-9

    Article  Google Scholar 

  2. Dhar S, Shamir L (2021) Evaluation of the benchmark datasets for testing the efficacy of deep convolutional neural networks. Vis Inform 5(3):92–101. https://doi.org/10.1016/j.visinf.2021.10.001

    Article  Google Scholar 

  3. Ghosh A, Sufian A, Sultana F, Chakrabarti A, De D (2020) Fundamental concepts of convolutional neural network. Intell Syst Ref Libr 172:519–567. https://doi.org/10.1007/978-3-030-32644-9_36

    Article  Google Scholar 

  4. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  5. Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

    Chapter  Google Scholar 

  6. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition. IEEE, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

    Chapter  Google Scholar 

  7. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition. IEEE, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

    Chapter  Google Scholar 

  8. Oztel I, Yolcu G, Oz C (2019) Performance comparison of transfer learning and training from scratch approaches for deep facial expression recognition. In: Proceedings of the 4th international conference on computer science and engineering, UBMK 2019, pp 290–295. https://doi.org/10.1109/UBMK.2019.8907203

    Chapter  Google Scholar 

  9. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I (eds) Artificial neural networks and machine learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science, vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_27

  10. Parah SA, Rashid M, Vijaykumar V (2022) Artificial intelligence for innovative healthcare informatics. Springer. ISBN: 978-3-030-96568-6

    Book  Google Scholar 

  11. Alzubaidi L et al (2020) Towards a better understanding of transfer learning for medical imaging: a case study. Appl Sci 10(13):4523. https://doi.org/10.3390/app10134523

    Article  Google Scholar 

  12. Alzubaidi L, Al-Shamma O, Fadhel MA, Farhan L, Zhang J, Duan Y (2020) Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics 9(3):445. https://doi.org/10.3390/electronics9030445

    Article  Google Scholar 

  13. Nazeer S et al (2022) Automatic classification of COVID-19 infected patients using convolution neural network models. In: Parah SA, Rashid M, Varadarajan V (eds) Artificial intelligence for innovative healthcare informatics. Springer, Cham, pp 119–131. https://doi.org/10.1007/978-3-030-96569-3_6

    Chapter  Google Scholar 

  14. Yaqub M et al (2020) State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci 10(7):427. https://doi.org/10.3390/brainsci10070427

    Article  Google Scholar 

  15. Wibowo A, Wiryawan PW, Nuqoyati NI (2019) Optimization of neural network for cancer microRNA biomarkers classification. J Phys Conf Ser 1217(1):012124. https://doi.org/10.1088/1742-6596/1217/1/012124

    Article  Google Scholar 

  16. Yu ZL, Sun G, Lv J (2022) A fractional-order momentum optimization approach of deep neural networks. Neural Comput Appl 34(9):7091–7111. https://doi.org/10.1007/s00521-021-06765-2

    Article  Google Scholar 

  17. Jaworska T (2021) Image segment classification using CNN. In: Uncertainty and imprecision in decision making and decision support: new challenges, solutions and perspectives, Advances in intelligent systems and computing, vol 1081. Springer, pp 409–425. https://doi.org/10.1007/978-3-030-47024-1_38

    Chapter  Google Scholar 

  18. Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Lechevallier Y, Saporta G (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD, pp 177–186

    Chapter  Google Scholar 

  19. Jin R, He X (2020) Convergence of momentum-based stochastic gradient descent. In: IEEE 16th international conference on control and automation, ICCA, 2020. IEEE, pp 779–784. https://doi.org/10.1109/ICCA51439.2020.9264458

    Chapter  Google Scholar 

  20. Becherer N, Pecarina J, Nykl S, Hopkinson K (2019) Improving optimization of convolutional neural networks through parameter fine-tuning. Neural Comput Appl 31(8):3469–3479. https://doi.org/10.1007/S00521-017-3285-0

    Article  Google Scholar 

  21. Kumar A, Sarkar S, Pradhan C (2020) Malaria disease detection using CNN technique with SGD, RMSprop and ADAM optimizers. In: Deep learning techniques for biomedical and health informatics. Studies in big data. Springer, pp 211–230. https://doi.org/10.1007/978-3-030-33966-1_11

    Chapter  Google Scholar 

  22. Zhang Z (2018) Improved Adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th international symposium on quality of service (IWQoS). IEEE, pp 1–2. https://doi.org/10.1109/IWQoS.2018.8624183

    Chapter  Google Scholar 

  23. Hikmat Haji S, Mohsin Abdulazeez A (2021) Comparison of optimization techniques based on gradient descent algorithm: a review. PalArch’s J Archaeol Egypt/Egyptol 18(4):2715–2743

    Google Scholar 

  24. Cardiac Atlas Project. Ventricular infarct segmentation. https://www.cardiacatlas.org/challenges/ventricular-infarct-segmentation/. Accessed 19 Aug 2022

  25. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  26. Suhaida D, Damit A, Sulaiman SN, Osman MK, Khairiah N (2022) Classification of left ventricle and non-left ventricle segment for cardiac assessment using deep convolutional neural network. J Electr Electron Syst Res 21:31–38

    Article  Google Scholar 

  27. Sahu P, Chug A, Singh AP, Singh D, Singh RP (2020) Implementation of CNNs for crop diseases classification: a comparison of pre-trained model and training from scratch. Int J Comput Sci Netw Secur 20(10):206–215

    Google Scholar 

  28. Weiss K, Khoshgoftaar TM, Wang DD (2016) A survey of transfer learning. J Big Data 3(1):9. https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  29. Alzubaidi L et al (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8(1):53. https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  30. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2017) SqueezeNet. arXiv:1602.07360 4:370. [Online]. Available: https://github.com/DeepScale/SqueezeNet

    Google Scholar 

  31. Grandini M, Bagli E, Visani G (2020) Metrics for multi-class classification: an overview. arXiv:2008.05756:1–17. [Online]. Available: http://arxiv.org/abs/2008.05756

  32. Hossin M, Sulaiman M (2015) A review on evaluation metrics for data. Int J Data Min Knowl Manag Process 5(2):1–11

    Article  Google Scholar 

  33. Markoulidakis I, Rallis I, Georgoulas I, Kopsiaftis G, Doulamis A, Doulamis N (2021) Multiclass confusion matrix reduction method and its application on net promoter score classification problem. Technologies 9(4):81. https://doi.org/10.3390/technologies9040081

    Article  Google Scholar 

  34. Kamili A et al (2021) DWFCAT: dual watermarking framework for industrial image authentication and tamper localization. IEEE Trans Ind Inform 17(7):5108–5117. https://doi.org/10.1109/TII.2020.3028612

    Article  Google Scholar 

  35. Sarosh P et al (2021) Secret sharing-based personal health records management for the Internet of Health Things. Sustain Cities Soc 74:103129

    Article  Google Scholar 

  36. Parsa S, Parah SA, Bhat GM, Khan M (2021) A security management framework for big data in smart healthcare. Big Data Res 25:100225

    Article  Google Scholar 

  37. Bhat GM et al (2010) Field programmable gate array (FPGA) implementation of novel complex PN-code-generator-based data scrambler and descrambler. Maejo Int J Sci Technol 4(1):125–135

    Google Scholar 

  38. Parah SA, Sheikh JA, Bhat GM (2014) A secure and efficient spatial domain data hiding technique based on pixel adjustment. Am J Eng Technol Res 14(2):33

    Google Scholar 

Download references

Acknowledgements

This research work ethics approval is obtained from Universiti Sains Malaysia (USM/JEPeM/21090623). The authors would like to express their gratitude to members of the Advanced Control System and Computing Research Group (ACSCRG), Advanced Rehabilitation Engineering in Diagnostic and Monitoring Research Group (AREDiM), Integrative Pharmacogenomics Institute (iPROMISE) and Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang for their assistance and guidance during the fieldwork. Finally, the authors are grateful to Universiti Teknologi MARA, Cawangan Pulau Pinang for their immense administrative and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Noraini Sulaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damit, D.S.A., Sulaiman, S.N., Osman, M.K., Karim, N.K.A., Meng, B.C.C. (2023). Performance Improvement with Optimization Algorithm in Isolating Left Ventricle and Non-Left Ventricle Cardiac. In: Parah, S.A., Hurrah, N.N., Khan, E. (eds) Intelligent Multimedia Signal Processing for Smart Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-34873-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34873-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34872-3

  • Online ISBN: 978-3-031-34873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics